File size: 2,488 Bytes
2f044c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import os
from pathlib import Path
from typing import Any, Dict, Iterator, List, Optional, Tuple, Union

import torch
from torch.utils.data import Dataset, IterableDataset

from relik.common.log import get_logger

logger = get_logger(__name__)


class BaseDataset(Dataset):
    def __init__(
        self,
        name: str,
        path: Optional[Union[str, os.PathLike, List[str], List[os.PathLike]]] = None,
        data: Any = None,
        **kwargs,
    ):
        super().__init__()
        self.name = name
        if path is None and data is None:
            raise ValueError("Either `path` or `data` must be provided")
        self.path = path
        self.project_folder = Path(__file__).parent.parent.parent
        self.data = data

    def __len__(self) -> int:
        return len(self.data)

    def __getitem__(
        self, index
    ) -> Union[Dict[str, torch.Tensor], Tuple[torch.Tensor, torch.Tensor]]:
        return self.data[index]

    def __repr__(self) -> str:
        return f"Dataset({self.name=}, {self.path=})"

    def load(
        self,
        paths: Union[str, os.PathLike, List[str], List[os.PathLike]],
        *args,
        **kwargs,
    ) -> Any:
        # load data from single or multiple paths in one single dataset
        raise NotImplementedError

    @staticmethod
    def collate_fn(batch: Any, *args, **kwargs) -> Any:
        raise NotImplementedError


class IterableBaseDataset(IterableDataset):
    def __init__(
        self,
        name: str,
        path: Optional[Union[str, Path, List[str], List[Path]]] = None,
        data: Any = None,
        *args,
        **kwargs,
    ):
        super().__init__()
        self.name = name
        if path is None and data is None:
            raise ValueError("Either `path` or `data` must be provided")
        self.path = path
        self.project_folder = Path(__file__).parent.parent.parent
        self.data = data

    def __iter__(self) -> Iterator[Dict[str, torch.Tensor]]:
        for sample in self.data:
            yield sample

    def __repr__(self) -> str:
        return f"Dataset({self.name=}, {self.path=})"

    def load(
        self,
        paths: Union[str, os.PathLike, List[str], List[os.PathLike]],
        *args,
        **kwargs,
    ) -> Any:
        # load data from single or multiple paths in one single dataset
        raise NotImplementedError

    @staticmethod
    def collate_fn(batch: Any, *args, **kwargs) -> Any:
        raise NotImplementedError