File size: 16,368 Bytes
2f044c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
import collections
import logging
from typing import Any, Dict, Iterator, List
import torch
import transformers as tr
from lightning_fabric.utilities import move_data_to_device
from torch.utils.data import DataLoader, IterableDataset
from tqdm import tqdm
from relik.common.torch_utils import get_autocast_context
from relik.common.log import get_logger
from relik.common.utils import get_callable_from_string
from relik.inference.data.objects import AnnotationType
from relik.reader.data.relik_reader_sample import RelikReaderSample
from relik.reader.pytorch_modules.base import RelikReaderBase
logger = get_logger(__name__, level=logging.INFO)
class RelikReaderForSpanExtraction(RelikReaderBase):
"""
A class for the RelikReader model for span extraction.
Args:
transformer_model (:obj:`str` or :obj:`transformers.PreTrainedModel` or :obj:`None`, `optional`):
The transformer model to use. If `None`, the default model is used.
additional_special_symbols (:obj:`int`, `optional`, defaults to 0):
The number of additional special symbols to add to the tokenizer.
num_layers (:obj:`int`, `optional`):
The number of layers to use. If `None`, all layers are used.
activation (:obj:`str`, `optional`, defaults to "gelu"):
The activation function to use.
linears_hidden_size (:obj:`int`, `optional`, defaults to 512):
The hidden size of the linears.
use_last_k_layers (:obj:`int`, `optional`, defaults to 1):
The number of last layers to use.
training (:obj:`bool`, `optional`, defaults to False):
Whether the model is in training mode.
device (:obj:`str` or :obj:`torch.device` or :obj:`None`, `optional`):
The device to use. If `None`, the default device is used.
tokenizer (:obj:`str` or :obj:`transformers.PreTrainedTokenizer` or :obj:`None`, `optional`):
The tokenizer to use. If `None`, the default tokenizer is used.
dataset (:obj:`IterableDataset` or :obj:`str` or :obj:`None`, `optional`):
The dataset to use. If `None`, the default dataset is used.
dataset_kwargs (:obj:`Dict[str, Any]` or :obj:`None`, `optional`):
The keyword arguments to pass to the dataset class.
default_reader_class (:obj:`str` or :obj:`transformers.PreTrainedModel` or :obj:`None`, `optional`):
The default reader class to use. If `None`, the default reader class is used.
**kwargs:
Keyword arguments.
"""
default_reader_class: str = (
"relik.reader.pytorch_modules.hf.modeling_relik.RelikReaderSpanModel"
)
default_data_class: str = "relik.reader.data.relik_reader_data.RelikDataset"
def __init__(
self,
transformer_model: str | tr.PreTrainedModel | None = None,
additional_special_symbols: int = 0,
num_layers: int | None = None,
activation: str = "gelu",
linears_hidden_size: int | None = 512,
use_last_k_layers: int = 1,
training: bool = False,
device: str | torch.device | None = None,
tokenizer: str | tr.PreTrainedTokenizer | None = None,
dataset: IterableDataset | str | None = None,
dataset_kwargs: Dict[str, Any] | None = None,
default_reader_class: tr.PreTrainedModel | str | None = None,
**kwargs,
):
super().__init__(
transformer_model=transformer_model,
additional_special_symbols=additional_special_symbols,
num_layers=num_layers,
activation=activation,
linears_hidden_size=linears_hidden_size,
use_last_k_layers=use_last_k_layers,
training=training,
device=device,
tokenizer=tokenizer,
dataset=dataset,
default_reader_class=default_reader_class,
**kwargs,
)
# and instantiate the dataset class
self.dataset = dataset
if self.dataset is None:
self.default_data_class = get_callable_from_string(self.default_data_class)
default_data_kwargs = dict(
dataset_path=None,
materialize_samples=False,
transformer_model=self.tokenizer,
special_symbols=self.default_data_class.get_special_symbols(
self.relik_reader_model.config.additional_special_symbols
),
for_inference=True,
use_nme=kwargs.get("use_nme", True),
)
# merge the default data kwargs with the ones passed to the model
default_data_kwargs.update(dataset_kwargs or {})
self.dataset = self.default_data_class(**default_data_kwargs)
@torch.no_grad()
@torch.inference_mode()
def _read(
self,
samples: List[RelikReaderSample] | None = None,
input_ids: torch.Tensor | None = None,
attention_mask: torch.Tensor | None = None,
token_type_ids: torch.Tensor | None = None,
prediction_mask: torch.Tensor | None = None,
special_symbols_mask: torch.Tensor | None = None,
max_length: int = 1000,
max_batch_size: int = 128,
token_batch_size: int = 2048,
precision: str = 32,
annotation_type: AnnotationType = AnnotationType.CHAR,
progress_bar: bool = False,
*args: object,
**kwargs: object,
) -> List[RelikReaderSample] | List[List[RelikReaderSample]]:
"""
A wrapper around the forward method that returns the predicted labels for each sample.
Args:
samples (:obj:`List[RelikReaderSample]`, `optional`):
The samples to read. If provided, `text` and `candidates` are ignored.
input_ids (:obj:`torch.Tensor`, `optional`):
The input ids of the text. If `samples` is provided, this is ignored.
attention_mask (:obj:`torch.Tensor`, `optional`):
The attention mask of the text. If `samples` is provided, this is ignored.
token_type_ids (:obj:`torch.Tensor`, `optional`):
The token type ids of the text. If `samples` is provided, this is ignored.
prediction_mask (:obj:`torch.Tensor`, `optional`):
The prediction mask of the text. If `samples` is provided, this is ignored.
special_symbols_mask (:obj:`torch.Tensor`, `optional`):
The special symbols mask of the text. If `samples` is provided, this is ignored.
max_length (:obj:`int`, `optional`, defaults to 1000):
The maximum length of the text.
max_batch_size (:obj:`int`, `optional`, defaults to 128):
The maximum batch size.
token_batch_size (:obj:`int`, `optional`):
The token batch size.
progress_bar (:obj:`bool`, `optional`, defaults to False):
Whether to show a progress bar.
precision (:obj:`str`, `optional`, defaults to 32):
The precision to use for the model.
annotation_type (`AnnotationType`, `optional`, defaults to `AnnotationType.CHAR`):
The type of annotation to return. If `char`, the spans will be in terms of
character offsets. If `word`, the spans will be in terms of word offsets.
*args:
Positional arguments.
**kwargs:
Keyword arguments.
Returns:
:obj:`List[RelikReaderSample]` or :obj:`List[List[RelikReaderSample]]`:
The predicted labels for each sample.
"""
precision = precision or self.precision
if samples is not None:
def _read_iterator():
def samples_it():
for i, sample in enumerate(samples):
assert sample._mixin_prediction_position is None
sample._mixin_prediction_position = i
if sample.spans is not None and len(sample.spans) > 0:
sample.window_labels = [[s[0], s[1], ""] for s in sample.spans]
yield sample
next_prediction_position = 0
position2predicted_sample = {}
# instantiate dataset
if self.dataset is None:
raise ValueError(
"You need to pass a dataset to the model in order to predict"
)
self.dataset.samples = samples_it()
self.dataset.model_max_length = max_length
self.dataset.tokens_per_batch = token_batch_size
self.dataset.max_batch_size = max_batch_size
# instantiate dataloader
iterator = DataLoader(
self.dataset, batch_size=None, num_workers=0, shuffle=False
)
if progress_bar:
iterator = tqdm(iterator, desc="Predicting with RelikReader")
with get_autocast_context(self.device, precision):
for batch in iterator:
batch = move_data_to_device(batch, self.device)
batch.update(kwargs)
batch_out = self._batch_predict(**batch)
for sample in batch_out:
if (
sample._mixin_prediction_position
>= next_prediction_position
):
position2predicted_sample[
sample._mixin_prediction_position
] = sample
# yield
while next_prediction_position in position2predicted_sample:
yield position2predicted_sample[next_prediction_position]
del position2predicted_sample[next_prediction_position]
next_prediction_position += 1
outputs = list(_read_iterator())
for sample in outputs:
self.dataset.merge_patches_predictions(sample)
if annotation_type == AnnotationType.CHAR:
self.dataset.convert_to_char_annotations(sample)
elif annotation_type == AnnotationType.WORD:
self.dataset.convert_to_word_annotations(sample)
else:
raise ValueError(
f"Annotation type {annotation_type} not recognized. "
f"Please choose one of {list(AnnotationType)}."
)
else:
outputs = list(
self._batch_predict(
input_ids,
attention_mask,
token_type_ids,
prediction_mask,
special_symbols_mask,
*args,
**kwargs,
)
)
return outputs
def _batch_predict(
self,
input_ids: torch.Tensor,
attention_mask: torch.Tensor,
token_type_ids: torch.Tensor | None = None,
prediction_mask: torch.Tensor | None = None,
special_symbols_mask: torch.Tensor | None = None,
sample: List[RelikReaderSample] | None = None,
top_k: int = 5, # the amount of top-k most probable entities to predict
*args,
**kwargs,
) -> Iterator[RelikReaderSample]:
"""
A wrapper around the forward method that returns the predicted labels for each sample.
It also adds the predicted labels to the samples.
Args:
input_ids (:obj:`torch.Tensor`):
The input ids of the text.
attention_mask (:obj:`torch.Tensor`):
The attention mask of the text.
token_type_ids (:obj:`torch.Tensor`, `optional`):
The token type ids of the text.
prediction_mask (:obj:`torch.Tensor`, `optional`):
The prediction mask of the text.
special_symbols_mask (:obj:`torch.Tensor`, `optional`):
The special symbols mask of the text.
sample (:obj:`List[RelikReaderSample]`, `optional`):
The samples to read. If provided, `text` and `candidates` are ignored.
top_k (:obj:`int`, `optional`, defaults to 5):
The amount of top-k most probable entities to predict.
*args:
Positional arguments.
**kwargs:
Keyword arguments.
Returns:
The predicted labels for each sample.
"""
forward_output = self.forward(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
prediction_mask=prediction_mask,
special_symbols_mask=special_symbols_mask,
*args,
**kwargs,
)
ned_start_predictions = forward_output["ned_start_predictions"].cpu().numpy()
ned_end_predictions = forward_output["ned_end_predictions"].cpu().numpy()
ed_predictions = forward_output["ed_predictions"].cpu().numpy()
ed_probabilities = forward_output["ed_probabilities"].cpu().numpy()
batch_predictable_candidates = kwargs["predictable_candidates"]
patch_offset = kwargs["patch_offset"]
for ts, ne_sp, ne_ep, edp, edpr, pred_cands, po in zip(
sample,
ned_start_predictions,
ned_end_predictions,
ed_predictions,
ed_probabilities,
batch_predictable_candidates,
patch_offset,
):
ne_start_indices = [ti for ti, c in enumerate(ne_sp[1:]) if c > 0]
ne_end_indices = [ti for ti, c in enumerate(ne_ep[1:]) if c > 0]
final_class2predicted_spans = collections.defaultdict(list)
spans2predicted_probabilities = dict()
for start_token_index, end_token_index in zip(
ne_start_indices, ne_end_indices
):
# predicted candidate
token_class = edp[start_token_index + 1] - 1
predicted_candidate_title = pred_cands[token_class]
final_class2predicted_spans[predicted_candidate_title].append(
[start_token_index, end_token_index]
)
# candidates probabilities
classes_probabilities = edpr[start_token_index + 1]
classes_probabilities_best_indices = classes_probabilities.argsort()[
::-1
]
titles_2_probs = []
top_k = (
min(
top_k,
len(classes_probabilities_best_indices),
)
if top_k != -1
else len(classes_probabilities_best_indices)
)
for i in range(top_k):
titles_2_probs.append(
(
pred_cands[classes_probabilities_best_indices[i] - 1],
classes_probabilities[
classes_probabilities_best_indices[i]
].item(),
)
)
spans2predicted_probabilities[
(start_token_index, end_token_index)
] = titles_2_probs
if "patches" not in ts._d:
ts._d["patches"] = dict()
ts._d["patches"][po] = dict()
sample_patch = ts._d["patches"][po]
sample_patch["predicted_window_labels"] = final_class2predicted_spans
sample_patch["span_title_probabilities"] = spans2predicted_probabilities
# additional info
sample_patch["predictable_candidates"] = pred_cands
# try-out for a new format
sample_patch["predicted_spans"] = final_class2predicted_spans
sample_patch[
"predicted_spans_probabilities"
] = spans2predicted_probabilities
yield ts
|