File size: 12,265 Bytes
2f044c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
import contextlib
import logging
import os
import tempfile
from typing import Callable, List, Optional, Tuple, Union
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
import transformers as tr
from relik.common.log import get_logger
from relik.common.torch_utils import get_autocast_context
from relik.retriever.common.model_inputs import ModelInputs
from relik.retriever.data.base.datasets import BaseDataset
from relik.retriever.indexers.base import BaseDocumentIndex
from relik.retriever.indexers.document import Document, DocumentStore
from relik.retriever.pytorch_modules import PRECISION_MAP, RetrievedSample
# check if ORT is available
# if is_package_available("onnxruntime"):
logger = get_logger(__name__, level=logging.INFO)
class MatrixMultiplicationModule(torch.nn.Module):
def __init__(self, embeddings):
super().__init__()
self.embeddings = torch.nn.Parameter(embeddings, requires_grad=False)
def forward(self, query):
return torch.matmul(query, self.embeddings.T)
class InMemoryDocumentIndex(BaseDocumentIndex):
DOCUMENTS_FILE_NAME = "documents.jsonl"
EMBEDDINGS_FILE_NAME = "embeddings.pt"
def __init__(
self,
documents: str
| List[str]
| os.PathLike
| List[os.PathLike]
| DocumentStore
| None = None,
embeddings: torch.Tensor | None = None,
metadata_fields: List[str] | None = None,
separator: str | None = None,
name_or_path: str | os.PathLike | None = None,
device: str = "cpu",
precision: str | int | torch.dtype = 32,
*args,
**kwargs,
) -> None:
"""
An in-memory indexer based on PyTorch.
Args:
documents (:obj:`Union[List[str]]`):
The documents to be indexed.
embeddings (:obj:`Optional[torch.Tensor]`, `optional`, defaults to :obj:`None`):
The embeddings of the documents.
device (:obj:`str`, `optional`, defaults to "cpu"):
The device to be used for storing the embeddings.
"""
super().__init__(
documents, embeddings, metadata_fields, separator, name_or_path, device
)
if embeddings is not None and documents is not None:
logger.info("Both documents and embeddings are provided.")
if len(documents) != embeddings.shape[0]:
raise ValueError(
"The number of documents and embeddings must be the same."
)
# # embeddings of the documents
# self.embeddings = embeddings
# does this do anything?
del embeddings
# convert the embeddings to the desired precision
if precision is not None:
if self.embeddings is not None and device == "cpu":
if PRECISION_MAP[precision] == PRECISION_MAP[16]:
logger.info(
f"Precision `{precision}` is not supported on CPU. "
f"Using `{PRECISION_MAP[32]}` instead."
)
precision = 32
if (
self.embeddings is not None
and self.embeddings.dtype != PRECISION_MAP[precision]
):
logger.info(
f"Index vectors are of type {self.embeddings.dtype}. "
f"Converting to {PRECISION_MAP[precision]}."
)
self.embeddings = self.embeddings.to(PRECISION_MAP[precision])
else:
# TODO: a bit redundant, fix this eventually
if (
device == "cpu"
and self.embeddings is not None
and self.embeddings.dtype != torch.float32
):
logger.info(
f"Index vectors are of type {self.embeddings.dtype}. "
f"Converting to {PRECISION_MAP[32]}."
)
self.embeddings = self.embeddings.to(PRECISION_MAP[32])
# move the embeddings to the desired device
if self.embeddings is not None and not self.embeddings.device == device:
self.embeddings = self.embeddings.to(device)
# TODO: check interactions with the embeddings
# self.mm = MatrixMultiplicationModule(embeddings=self.embeddings)
# self.mm.eval()
# precision to be used for the embeddings
self.precision = precision
@torch.no_grad()
@torch.inference_mode()
def index(
self,
retriever,
documents: Optional[List[Document]] = None,
batch_size: int = 32,
num_workers: int = 4,
max_length: int | None = None,
collate_fn: Optional[Callable] = None,
encoder_precision: Optional[Union[str, int]] = None,
compute_on_cpu: bool = False,
force_reindex: bool = False,
) -> "InMemoryDocumentIndex":
"""
Index the documents using the encoder.
Args:
retriever (:obj:`torch.nn.Module`):
The encoder to be used for indexing.
documents (:obj:`List[Document]`, `optional`, defaults to :obj:`None`):
The documents to be indexed. If not provided, the documents provided at the initialization will be used.
batch_size (:obj:`int`, `optional`, defaults to 32):
The batch size to be used for indexing.
num_workers (:obj:`int`, `optional`, defaults to 4):
The number of workers to be used for indexing.
max_length (:obj:`int`, `optional`, defaults to None):
The maximum length of the input to the encoder.
collate_fn (:obj:`Callable`, `optional`, defaults to None):
The collate function to be used for batching.
encoder_precision (:obj:`Union[str, int]`, `optional`, defaults to None):
The precision to be used for the encoder.
compute_on_cpu (:obj:`bool`, `optional`, defaults to False):
Whether to compute the embeddings on CPU.
force_reindex (:obj:`bool`, `optional`, defaults to False):
Whether to force reindexing.
Returns:
:obj:`InMemoryIndexer`: The indexer object.
"""
if documents is None and self.documents is None:
raise ValueError("Documents must be provided.")
if self.embeddings is not None and not force_reindex and documents is None:
logger.info(
"Embeddings are already present and `force_reindex` is `False`. Skipping indexing."
)
return self
if force_reindex:
if documents is not None:
self.documents.add_documents(documents)
data = [k for k in self.get_passages()]
else:
if documents is not None:
data = [k for k in self.get_passages(DocumentStore(documents))]
# add the documents to the actual document store
self.documents.add_documents(documents)
else:
if self.embeddings is None:
data = [k for k in self.get_passages()]
if collate_fn is None:
tokenizer = retriever.passage_tokenizer
def collate_fn(x):
return ModelInputs(
tokenizer(
x,
padding=True,
return_tensors="pt",
truncation=True,
max_length=max_length or tokenizer.model_max_length,
)
)
dataloader = DataLoader(
BaseDataset(name="passage", data=data),
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
pin_memory=False,
collate_fn=collate_fn,
)
encoder = retriever.passage_encoder
# Create empty lists to store the passage embeddings and passage index
passage_embeddings: List[torch.Tensor] = []
encoder_device = "cpu" if compute_on_cpu else encoder.device
# fucking autocast only wants pure strings like 'cpu' or 'cuda'
# we need to convert the model device to that
device_type_for_autocast = str(encoder_device).split(":")[0]
# autocast doesn't work with CPU and stuff different from bfloat16
autocast_pssg_mngr = (
contextlib.nullcontext()
if device_type_for_autocast == "cpu"
else (
torch.autocast(
device_type=device_type_for_autocast,
dtype=PRECISION_MAP[encoder_precision],
)
)
)
with autocast_pssg_mngr:
# Iterate through each batch in the dataloader
for batch in tqdm(dataloader, desc="Indexing"):
# Move the batch to the device
batch: ModelInputs = batch.to(encoder_device)
# Compute the passage embeddings
passage_outs = encoder(**batch).pooler_output
# Append the passage embeddings to the list
if self.device == "cpu":
passage_embeddings.extend([c.detach().cpu() for c in passage_outs])
else:
passage_embeddings.extend([c for c in passage_outs])
# move the passage embeddings to the CPU if not already done
# the move to cpu and then to gpu is needed to avoid OOM when using mixed precision
if not self.device == "cpu": # this if is to avoid unnecessary moves
passage_embeddings = [c.detach().cpu() for c in passage_embeddings]
# stack it
passage_embeddings: torch.Tensor = torch.stack(passage_embeddings, dim=0)
# move the passage embeddings to the gpu if needed
if not self.device == "cpu":
passage_embeddings = passage_embeddings.to(PRECISION_MAP[self.precision])
passage_embeddings = passage_embeddings.to(self.device)
self.embeddings = passage_embeddings
# update the matrix multiplication module
# self.mm = MatrixMultiplicationModule(embeddings=self.embeddings)
# free up memory from the unused variable
del passage_embeddings
return self
@torch.no_grad()
@torch.inference_mode()
def search(self, query: torch.Tensor, k: int = 1) -> list[list[RetrievedSample]]:
"""
Search the documents using the query.
Args:
query (:obj:`torch.Tensor`):
The query to be used for searching.
k (:obj:`int`, `optional`, defaults to 1):
The number of documents to be retrieved.
Returns:
:obj:`List[RetrievedSample]`: The retrieved documents.
"""
with get_autocast_context(self.device, self.embeddings.dtype):
# move query to the same device as embeddings
query = query.to(self.embeddings.device)
if query.dtype != self.embeddings.dtype:
query = query.to(self.embeddings.dtype)
similarity = torch.matmul(query, self.embeddings.T)
# similarity = self.mm(query)
# Retrieve the indices of the top k passage embeddings
retriever_out: torch.return_types.topk = torch.topk(
similarity, k=min(k, similarity.shape[-1]), dim=1
)
# get int values
batch_top_k: List[List[int]] = retriever_out.indices.detach().cpu().tolist()
# get float values
batch_scores: List[List[float]] = retriever_out.values.detach().cpu().tolist()
# Retrieve the passages corresponding to the indices
batch_docs = [
[self.documents.get_document_from_id(i) for i in indices]
for indices in batch_top_k
]
# build the output object
batch_retrieved_samples = [
[
RetrievedSample(document=doc, score=score)
for doc, score in zip(docs, scores)
]
for docs, scores in zip(batch_docs, batch_scores)
]
return batch_retrieved_samples
|