|
import hydra |
|
import lightning |
|
from hydra.utils import to_absolute_path |
|
from lightning import Trainer |
|
from lightning.pytorch.callbacks import LearningRateMonitor, ModelCheckpoint |
|
from lightning.pytorch.loggers.wandb import WandbLogger |
|
from omegaconf import DictConfig, OmegaConf, open_dict |
|
from torch.utils.data import DataLoader |
|
|
|
from relik.reader.data.relik_reader_re_data import RelikREDataset |
|
from relik.reader.lightning_modules.relik_reader_re_pl_module import ( |
|
RelikReaderREPLModule, |
|
) |
|
from relik.reader.pytorch_modules.optim import ( |
|
AdamWWithWarmupOptimizer, |
|
LayerWiseLRDecayOptimizer, |
|
) |
|
from relik.reader.utils.relation_matching_eval import REStrongMatchingCallback |
|
from relik.reader.utils.special_symbols import get_special_symbols_re |
|
|
|
|
|
@hydra.main(config_path="../conf", config_name="config") |
|
def train(cfg: DictConfig) -> None: |
|
lightning.seed_everything(cfg.training.seed) |
|
|
|
special_symbols = get_special_symbols_re(cfg.model.relations_per_forward) |
|
|
|
|
|
train_dataset: RelikREDataset = hydra.utils.instantiate( |
|
cfg.data.train_dataset, |
|
dataset_path=to_absolute_path(cfg.data.train_dataset_path), |
|
special_symbols=special_symbols, |
|
) |
|
|
|
|
|
|
|
with open_dict(cfg): |
|
cfg.data.val_dataset.special_symbols = special_symbols |
|
|
|
val_dataset: RelikREDataset = hydra.utils.instantiate( |
|
cfg.data.val_dataset, |
|
dataset_path=to_absolute_path(cfg.data.val_dataset_path), |
|
) |
|
|
|
if val_dataset.materialize_samples: |
|
list(val_dataset.dataset_iterator_func()) |
|
|
|
model = RelikReaderREPLModule( |
|
cfg=OmegaConf.to_container(cfg), |
|
transformer_model=cfg.model.model.transformer_model, |
|
additional_special_symbols=len(special_symbols), |
|
training=True, |
|
) |
|
model.relik_reader_re_model._tokenizer = train_dataset.tokenizer |
|
|
|
opt_conf = cfg.model.optimizer |
|
|
|
if "total_reset" not in opt_conf: |
|
optimizer_factory = AdamWWithWarmupOptimizer( |
|
lr=opt_conf.lr, |
|
warmup_steps=opt_conf.warmup_steps, |
|
total_steps=opt_conf.total_steps, |
|
no_decay_params=opt_conf.no_decay_params, |
|
weight_decay=opt_conf.weight_decay, |
|
) |
|
else: |
|
optimizer_factory = LayerWiseLRDecayOptimizer( |
|
lr=opt_conf.lr, |
|
warmup_steps=opt_conf.warmup_steps, |
|
total_steps=opt_conf.total_steps, |
|
total_reset=opt_conf.total_reset, |
|
no_decay_params=opt_conf.no_decay_params, |
|
weight_decay=opt_conf.weight_decay, |
|
lr_decay=opt_conf.lr_decay, |
|
) |
|
|
|
model.set_optimizer_factory(optimizer_factory) |
|
|
|
callbacks = [ |
|
REStrongMatchingCallback( |
|
to_absolute_path(cfg.data.val_dataset_path), cfg.data.val_dataset |
|
), |
|
ModelCheckpoint( |
|
"model", |
|
filename="{epoch}-{val_f1:.2f}", |
|
monitor="val_f1", |
|
mode="max", |
|
), |
|
LearningRateMonitor(), |
|
] |
|
|
|
wandb_logger = WandbLogger(cfg.model_name, project=cfg.project_name) |
|
|
|
|
|
trainer: Trainer = hydra.utils.instantiate( |
|
cfg.training.trainer, |
|
callbacks=callbacks, |
|
logger=wandb_logger, |
|
) |
|
|
|
|
|
trainer.fit( |
|
model=model, |
|
train_dataloaders=DataLoader(train_dataset, batch_size=None, num_workers=0), |
|
val_dataloaders=DataLoader(val_dataset, batch_size=None, num_workers=0), |
|
ckpt_path=cfg.training.ckpt_path if cfg.training.ckpt_path else None, |
|
) |
|
|
|
|
|
if cfg.training.save_model_path: |
|
model = RelikReaderREPLModule.load_from_checkpoint( |
|
trainer.checkpoint_callback.best_model_path |
|
) |
|
model.relik_reader_re_model._tokenizer = train_dataset.tokenizer |
|
model.relik_reader_re_model.save_pretrained(cfg.training.save_model_path) |
|
|
|
|
|
def main(): |
|
train() |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|