CarlosMalaga's picture
Upload 201 files
2f044c1 verified
raw
history blame
4.17 kB
import hydra
import lightning
from hydra.utils import to_absolute_path
from lightning import Trainer
from lightning.pytorch.callbacks import LearningRateMonitor, ModelCheckpoint
from lightning.pytorch.loggers.wandb import WandbLogger
from omegaconf import DictConfig, OmegaConf, open_dict
from torch.utils.data import DataLoader
from relik.reader.data.relik_reader_re_data import RelikREDataset
from relik.reader.lightning_modules.relik_reader_re_pl_module import (
RelikReaderREPLModule,
)
from relik.reader.pytorch_modules.optim import (
AdamWWithWarmupOptimizer,
LayerWiseLRDecayOptimizer,
)
from relik.reader.utils.relation_matching_eval import REStrongMatchingCallback
from relik.reader.utils.special_symbols import get_special_symbols_re
@hydra.main(config_path="../conf", config_name="config")
def train(cfg: DictConfig) -> None:
lightning.seed_everything(cfg.training.seed)
special_symbols = get_special_symbols_re(cfg.model.relations_per_forward)
# datasets declaration
train_dataset: RelikREDataset = hydra.utils.instantiate(
cfg.data.train_dataset,
dataset_path=to_absolute_path(cfg.data.train_dataset_path),
special_symbols=special_symbols,
)
# update of validation dataset config with special_symbols since they
# are required even from the EvaluationCallback dataset_config
with open_dict(cfg):
cfg.data.val_dataset.special_symbols = special_symbols
val_dataset: RelikREDataset = hydra.utils.instantiate(
cfg.data.val_dataset,
dataset_path=to_absolute_path(cfg.data.val_dataset_path),
)
if val_dataset.materialize_samples:
list(val_dataset.dataset_iterator_func())
# model declaration
model = RelikReaderREPLModule(
cfg=OmegaConf.to_container(cfg),
transformer_model=cfg.model.model.transformer_model,
additional_special_symbols=len(special_symbols),
training=True,
)
model.relik_reader_re_model._tokenizer = train_dataset.tokenizer
# optimizer declaration
opt_conf = cfg.model.optimizer
if "total_reset" not in opt_conf:
optimizer_factory = AdamWWithWarmupOptimizer(
lr=opt_conf.lr,
warmup_steps=opt_conf.warmup_steps,
total_steps=opt_conf.total_steps,
no_decay_params=opt_conf.no_decay_params,
weight_decay=opt_conf.weight_decay,
)
else:
optimizer_factory = LayerWiseLRDecayOptimizer(
lr=opt_conf.lr,
warmup_steps=opt_conf.warmup_steps,
total_steps=opt_conf.total_steps,
total_reset=opt_conf.total_reset,
no_decay_params=opt_conf.no_decay_params,
weight_decay=opt_conf.weight_decay,
lr_decay=opt_conf.lr_decay,
)
model.set_optimizer_factory(optimizer_factory)
# callbacks declaration
callbacks = [
REStrongMatchingCallback(
to_absolute_path(cfg.data.val_dataset_path), cfg.data.val_dataset
),
ModelCheckpoint(
"model",
filename="{epoch}-{val_f1:.2f}",
monitor="val_f1",
mode="max",
),
LearningRateMonitor(),
]
wandb_logger = WandbLogger(cfg.model_name, project=cfg.project_name)
# trainer declaration
trainer: Trainer = hydra.utils.instantiate(
cfg.training.trainer,
callbacks=callbacks,
logger=wandb_logger,
)
# Trainer fit
trainer.fit(
model=model,
train_dataloaders=DataLoader(train_dataset, batch_size=None, num_workers=0),
val_dataloaders=DataLoader(val_dataset, batch_size=None, num_workers=0),
ckpt_path=cfg.training.ckpt_path if cfg.training.ckpt_path else None,
)
# Load best checkpoint
if cfg.training.save_model_path:
model = RelikReaderREPLModule.load_from_checkpoint(
trainer.checkpoint_callback.best_model_path
)
model.relik_reader_re_model._tokenizer = train_dataset.tokenizer
model.relik_reader_re_model.save_pretrained(cfg.training.save_model_path)
def main():
train()
if __name__ == "__main__":
main()