import streamlit as st import datasets import os import json from transformers import AutoTokenizer import ast import re version = st.sidebar.selectbox("Choose a version", ["init","local_dedup"]) if version == "init": CACHE_DIR = "cache_ds/" #Use this to build the dataset else: CACHE_DIR = "local_dedup/" contribution_json = "contributors.json" contribution_dict = json.load(open(contribution_json,"r")) IGNORE_LIST = ["Bible","Tanzil",""] splits = [split for split in os.listdir(CACHE_DIR) if split not in IGNORE_LIST] cached_ds = os.listdir(CACHE_DIR) tokenizer = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b') def load_page(split): with st.spinner('Downloading and buidling dataset...'): if split not in cached_ds: ds = datasets.load_dataset('CarperAI/pile-v2-small-filtered',"train", data_files="data/"+split+"/data.json") else: ds = datasets.load_from_disk(CACHE_DIR+split) print("Sucessfully loaded "+split) st.title("Dataset Explorer") st.write(f"# {split}") if split in contribution_dict: st.caption(f"Contributors: {','.join(contribution_dict[split])}") else: st.caption(f"Needs to be updated....") with st.form("dataset_form"): index = st.slider('Select a row', 0, len(ds)-1, 0) if st.form_submit_button("Load"): st.write(f"Row {index}") data = ds[index] content = data["text"] meta = data["meta"] with st.expander("Render Content"): st.write(content) st.write("### Content:") st.text(content) st.write("### Meta:") st.write(ast.literal_eval(meta)) #Tokenizer related count tokenized = tokenizer(content, return_length=True)['length'][0] token_count_metric = st.metric("Token Count(compared to 2048)",value=tokenized,delta=4096-tokenized) #Word related count split_words = re.findall(r'\w+', content) word_count_metric = st.metric("Word Count",value=len(split_words)) demo_name = st.sidebar.selectbox("Choose a demo", splits) load_page(demo_name)