Spaces:
Runtime error
Runtime error
ncoop57
commited on
Commit
·
cf5eed6
1
Parent(s):
4c20fbb
Made more readyable and added plots
Browse files
app.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import matplotlib.pyplot as plt
|
| 3 |
import numpy as np
|
|
|
|
| 4 |
|
| 5 |
# ai4code_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/AI4Code")
|
| 6 |
# amps_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/AMPS")
|
|
@@ -182,57 +183,52 @@ dataset_data = {
|
|
| 182 |
},
|
| 183 |
}
|
| 184 |
|
| 185 |
-
def plt_plot(
|
| 186 |
-
|
| 187 |
-
#
|
|
|
|
| 188 |
# create a figure
|
| 189 |
fig = plt.figure()
|
| 190 |
# add a subplot
|
| 191 |
ax = fig.add_subplot(111)
|
| 192 |
-
# plot some data
|
| 193 |
-
ax.hist(x, bins=50)
|
| 194 |
# plot red dashed line at threshold
|
| 195 |
ax.axvline(threshold, color='r', linestyle='dashed', linewidth=2)
|
| 196 |
-
|
|
|
|
|
|
|
| 197 |
plt.xlabel("Value")
|
| 198 |
plt.ylabel("Frequency")
|
|
|
|
|
|
|
| 199 |
return fig
|
| 200 |
-
# x = ["Math", "Business", "Statistics", "IT", "Commerce"]
|
| 201 |
-
# y = [68, 73, 82, 74, 85]
|
| 202 |
-
# # create a new plot
|
| 203 |
-
# plt.rcParams['figure.figsize'] = 6,4
|
| 204 |
-
# fig = plt.figure()
|
| 205 |
-
# ax = fig.add_axes([0,0,1,1])
|
| 206 |
-
# ax.bar(x, y)
|
| 207 |
-
# plot red dashed line at threshold
|
| 208 |
-
# plt.axhline(y=threshold, color='r', linestyle='--')
|
| 209 |
-
# plt.title("Marks per subject")
|
| 210 |
-
# plt.xlabel("Subject")
|
| 211 |
-
# plt.ylabel("Score")
|
| 212 |
-
|
| 213 |
-
# return fig
|
| 214 |
|
| 215 |
with gr.Blocks() as demo:
|
| 216 |
-
dataset = gr.Radio(list(dataset_data.keys()), label="Dataset")
|
|
|
|
| 217 |
|
| 218 |
with gr.Tab("Character Repetition Ratio"):
|
| 219 |
# plot some random data
|
| 220 |
plot = gr.Plot()
|
| 221 |
threshold = gr.Slider(minimum=0, maximum=100, label="Threshold")
|
| 222 |
calculate = gr.Button("Calculate")
|
| 223 |
-
|
|
|
|
| 224 |
|
| 225 |
with gr.Tab("Word Repetition Ratio"):# plot some random data
|
| 226 |
plot = gr.Plot()
|
| 227 |
threshold = gr.Slider(minimum=0, maximum=1, label="Threshold")
|
| 228 |
calculate = gr.Button("Calculate")
|
| 229 |
-
|
|
|
|
| 230 |
|
| 231 |
with gr.Tab("Flagged Word Ratio"):# plot some random data
|
| 232 |
plot = gr.Plot()
|
| 233 |
threshold = gr.Slider(minimum=0, maximum=1, label="Threshold")
|
| 234 |
calculate = gr.Button("Calculate")
|
| 235 |
-
|
|
|
|
| 236 |
|
| 237 |
if __name__ == "__main__":
|
| 238 |
demo.launch(share=True)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import matplotlib.pyplot as plt
|
| 3 |
import numpy as np
|
| 4 |
+
from functools import partial
|
| 5 |
|
| 6 |
# ai4code_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/AI4Code")
|
| 7 |
# amps_ds = load_dataset("CarperAI/pile-v2-small", data_dir="data/AMPS")
|
|
|
|
| 183 |
},
|
| 184 |
}
|
| 185 |
|
| 186 |
+
def plt_plot(ratio, dataset, threshold):
|
| 187 |
+
x = dataset_data[dataset][ratio]
|
| 188 |
+
# calculate percentage of data that will be removed given threshold
|
| 189 |
+
perc = np.sum(x < threshold) / len(x)
|
| 190 |
# create a figure
|
| 191 |
fig = plt.figure()
|
| 192 |
# add a subplot
|
| 193 |
ax = fig.add_subplot(111)
|
| 194 |
+
# plot some data using black
|
| 195 |
+
ax.hist(x, bins=50, color="black")
|
| 196 |
# plot red dashed line at threshold
|
| 197 |
ax.axvline(threshold, color='r', linestyle='dashed', linewidth=2)
|
| 198 |
+
# set title
|
| 199 |
+
# add percentage of data removed
|
| 200 |
+
ax.set_title(f"{dataset} (removed {perc:.2%})")
|
| 201 |
plt.xlabel("Value")
|
| 202 |
plt.ylabel("Frequency")
|
| 203 |
+
# make it look nice
|
| 204 |
+
plt.tight_layout()
|
| 205 |
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
with gr.Blocks() as demo:
|
| 208 |
+
dataset = gr.Radio(list(dataset_data.keys()), label="Dataset", value="arXiv")
|
| 209 |
+
print(dataset.value)
|
| 210 |
|
| 211 |
with gr.Tab("Character Repetition Ratio"):
|
| 212 |
# plot some random data
|
| 213 |
plot = gr.Plot()
|
| 214 |
threshold = gr.Slider(minimum=0, maximum=100, label="Threshold")
|
| 215 |
calculate = gr.Button("Calculate")
|
| 216 |
+
plot_fn = partial(plt_plot, "word_rep_ratios")
|
| 217 |
+
calculate.click(plot_fn, [dataset, threshold], plot)
|
| 218 |
|
| 219 |
with gr.Tab("Word Repetition Ratio"):# plot some random data
|
| 220 |
plot = gr.Plot()
|
| 221 |
threshold = gr.Slider(minimum=0, maximum=1, label="Threshold")
|
| 222 |
calculate = gr.Button("Calculate")
|
| 223 |
+
plot_fn = partial(plt_plot, "char_rep_ratios")
|
| 224 |
+
calculate.click(plot_fn, [dataset, threshold], plot)
|
| 225 |
|
| 226 |
with gr.Tab("Flagged Word Ratio"):# plot some random data
|
| 227 |
plot = gr.Plot()
|
| 228 |
threshold = gr.Slider(minimum=0, maximum=1, label="Threshold")
|
| 229 |
calculate = gr.Button("Calculate")
|
| 230 |
+
plot_fn = partial(plt_plot, "flagged_word_ratios")
|
| 231 |
+
calculate.click(plot_fn, [dataset, threshold], plot)
|
| 232 |
|
| 233 |
if __name__ == "__main__":
|
| 234 |
demo.launch(share=True)
|