Spaces:
Runtime error
Runtime error
import os | |
from pathlib import Path | |
from PIL import Image | |
import torch | |
import torch.backends.cudnn as cudnn | |
from numpy import random | |
from models.experimental import attempt_load | |
from utils.datasets import LoadImages | |
from utils.general import (non_max_suppression, scale_coords, xyxy2xywh) | |
from utils.torch_utils import select_device | |
import gradio as gr | |
import huggingface_hub | |
from crop import crop | |
class FaceCrop: | |
def __init__(self): | |
self.device = select_device() | |
self.half = self.device.type != 'cpu' | |
self.results = [] | |
def load_dataset(self, source): | |
self.source = source | |
self.dataset = LoadImages(source) | |
print(f'Successfully load {source}') | |
def load_model(self, model): | |
self.model = attempt_load(model, map_location=self.device) | |
if self.half: | |
self.model.half() | |
print(f'Successfully load model weights from {model}') | |
def set_crop_config(self, target_size, mode=0, face_ratio=3, threshold=1.5): | |
self.target_size = target_size | |
self.mode = mode | |
self.face_ratio = face_ratio | |
self.threshold = threshold | |
def info(self): | |
attributes = dir(self) | |
for attribute in attributes: | |
if not attribute.startswith('__') and not callable(getattr(self, attribute)): | |
value = getattr(self, attribute) | |
print(attribute, " = ", value) | |
def process(self): | |
for path, img, im0s, vid_cap in self.dataset: | |
img = torch.from_numpy(img).to(self.device) | |
img = img.half() if self.half else img.float() # uint8 to fp16/32 | |
img /= 255.0 # 0 - 255 to 0.0 - 1.0 | |
if img.ndimension() == 3: | |
img = img.unsqueeze(0) | |
# Inference | |
pred = self.model(img, augment=False)[0] | |
# Apply NMS | |
pred = non_max_suppression(pred) | |
# Process detections | |
for i, det in enumerate(pred): # detections per image | |
p, s, im0 = path, '', im0s | |
#txt_path = str(Path(out) / Path(p).stem) | |
s += '%gx%g ' % img.shape[2:] # print string | |
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh | |
if det is not None and len(det): | |
# Rescale boxes from img_size to im0 size | |
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() | |
# Write results | |
for *xyxy, conf, cls in det: | |
if conf > 0.6: # Write to file | |
x, y, w, h = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() | |
self.results.append(crop(self.source, (x, y), mode=self.mode, size=self.target_size, box=(w, h), face_ratio=self.face_ratio, shreshold=self.threshold)) | |
def run(img, mode, width, height, face_ratio, threshold): | |
face_crop_pipeline.results = [] | |
face_crop_pipeline.load_dataset(img) | |
face_crop_pipeline.set_crop_config(mode=mode, target_size=(width,height), face_ratio=face_ratio, threshold=threshold) | |
face_crop_pipeline.process() | |
return face_crop_pipeline.results | |
if __name__ == '__main__': | |
model_path = huggingface_hub.hf_hub_download("Carzit/yolo5x_anime", "yolov5x_anime.pt") | |
face_crop_pipeline = FaceCrop() | |
face_crop_pipeline.load_model(model_path) | |
app = gr.Blocks() | |
with app: | |
gr.Markdown("# Face Crop Anime") | |
with gr.Row(): | |
input_img = gr.Image(label="Input Image", image_mode="RGB", type='filepath') | |
output_img = gr.Gallery(label="Cropped Image") | |
with gr.Row(): | |
crop_mode = gr.Dropdown(['Auto', 'No Scale', 'Full Screen', 'Fixed Face Propotion'], label="Crop Mode", value='Auto', type='index') | |
tgt_width = gr.Slider(32, 2048, value=512, label="Width") | |
tgt_height = gr.Slider(32, 2048, value=512, label="Height") | |
with gr.Row(): | |
face_ratio = gr.Slider(1, 5, step=0.1, value=2, label="Face Ratio", info="Necessary if choosing \'Auto\' or 'Fixed Face Propotion' Mode") | |
threshold = gr.Slider(1, 5, step=0.1, value=1.5, label="Threshold", info="Necessary if choosing \'Auto\' Mode") | |
run_btn = gr.Button(variant="primary") | |
with gr.Row(): | |
examples_data = [["examples/Eda.png"],["examples/Chtholly.png"],["examples/Fairies.png"]] | |
examples = gr.Examples(examples=examples_data, | |
inputs=input_img) | |
run_btn.click(run, [input_img, crop_mode, tgt_width, tgt_height, face_ratio, threshold], [output_img]) | |
app.launch() | |