File size: 3,366 Bytes
81d8245
 
8b5fe62
 
 
81d8245
 
2e40cec
637d576
8b5fe62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81d8245
8b5fe62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
from utils_html import HTML_TEMPLATE
from io import BytesIO
import gradio as gr 
import numpy as np 
import requests
import modal
import PIL

f = modal.Cls.lookup("casa-interior-hf-v4", "DesignModel")
f_gc = modal.Cls.lookup("casa-interior-gc-v2", "GetProduct")

def casa_ai_run_tab1(image=None, text=None): 
    
    if image is None: 
        print('Please provide image of empty room to design')
        return None

    if text is None: 
        print('Please provide a text prompt')
        return None

    result_image = f.inference.remote("tab1", image, text)
    return result_image

def casa_ai_run_tab2(dict=None, text=None):
    
    image = dict["background"].convert("RGB")
    mask = dict["layers"][0].convert('L')

    if np.sum(np.array(mask)) == 0: 
        mask = None 
        
    if mask is None: 
        print('Please provide a mask over the object you want to generate again.')
        
    if image is None and text is None: 
        print('Please provide context in form of image, text')
        return None
    
    result_image = f.inference.remote("tab2", image, text, mask)
    return result_image

def casa_ai_run_tab3(dict=None):

    selected_crop = dict["composite"]
    
    if selected_crop is None: 
        print('Please provide cropped object')
        return None

    selected_crop = PIL.Image.fromarray(selected_crop).convert('RGB')
    results = f_gc.inference.remote(selected_crop)

    return results

with gr.Blocks() as casa:
    title = "Casa-AI Demo"
    description = "A Gradio interface to use CasaAI for virtual staging"
    gr.HTML(value=HTML_TEMPLATE, show_label=False)

    with gr.Tab("Reimagine"):
        with gr.Row():
            with gr.Column():
                inputs = [
                            gr.Image(sources='upload', type="pil", label="Upload"), 
                            gr.Textbox(label="Room description.")
                        ]
            with gr.Column():
                outputs = [gr.Image(label="Generated room image")]

        
        submit_btn = gr.Button("Generate!")
        submit_btn.click(casa_ai_run_tab1, inputs=inputs, outputs=outputs)

        
    with gr.Tab("Redesign"):
        with gr.Row():
            with gr.Column():
                inputs = [
                            gr.ImageEditor(sources='upload', brush=gr.Brush(colors=["#FFFFFF"]), elem_id="image_upload", type="pil", label="Upload", layers=False, eraser=True, transforms=[]),
                            gr.Textbox(label="Description for redesigning masked object")]
            with gr.Column():
                outputs = [gr.Image(label="Image with new designed object")]
                
        submit_btn = gr.Button("Redesign!")
        submit_btn.click(casa_ai_run_tab2, inputs=inputs, outputs=outputs)

    with gr.Tab("Recommendation"):
        with gr.Row():
            with gr.Column():
                inputs = [
                            gr.ImageEditor(sources='upload', elem_id="image_upload", type="numpy", label="Upload", layers=False, eraser=False, brush=False, transforms=['crop']),
                            ]
            with gr.Column():
                outputs = [gr.Gallery(label="Similar products")]
                
        submit_btn = gr.Button("Find similar products!")
        submit_btn.click(casa_ai_run_tab3, inputs=inputs, outputs=outputs)

casa.launch()