Spaces:
Running
Running
from utils_html import HTML_TEMPLATE | |
from io import BytesIO | |
import gradio as gr | |
import numpy as np | |
import requests | |
import modal | |
import PIL | |
f_gc = modal.Cls.lookup("casa-interior-gc-v2", "GetProduct") | |
def casa_ai_run_tab1(image=None, text=None): | |
if image is None: | |
print('Please provide image of empty room to design') | |
return None | |
if text is None: | |
print('Please provide a text prompt') | |
return None | |
f = modal.Cls.lookup("casa-interior-hf-v4", "DesignModel") | |
result_image = f.inference.remote("tab1", image, text) | |
return result_image | |
def casa_ai_run_tab2(dict=None, text=None): | |
image = dict["background"].convert("RGB") | |
mask = dict["layers"][0].convert('L') | |
if np.sum(np.array(mask)) == 0: | |
mask = None | |
if mask is None: | |
print('Please provide a mask over the object you want to generate again.') | |
if image is None and text is None: | |
print('Please provide context in form of image, text') | |
return None | |
f_tab2 = modal.Cls.lookup("casa-interior-hf-v3", "DesignModel") | |
result_image = f_tab2.inference.remote("tab2", image, text, mask) | |
return result_image | |
def casa_ai_run_tab3(dict=None): | |
selected_crop = dict["composite"] | |
if selected_crop is None: | |
print('Please provide cropped object') | |
return None | |
selected_crop = PIL.Image.fromarray(selected_crop).convert('RGB') | |
results = f_gc.inference.remote(selected_crop) | |
return results | |
def casa_ai_run_tab_sketch(image=None, room_type=None, room_style=None): | |
text = f"{room_type}, {room_style}" | |
f = modal.Cls.lookup("casa-interior-hf-v6-sketch", "DesignModel") | |
result_image = f.inference.remote(image, text) | |
return result_image | |
with gr.Blocks() as casa: | |
title = "Casa-AI Demo" | |
description = "A Gradio interface to use CasaAI for virtual staging" | |
gr.HTML(value=HTML_TEMPLATE, show_label=False) | |
with gr.Tab("Reimagine"): | |
with gr.Row(): | |
with gr.Column(): | |
inputs = [ | |
gr.Image(sources='upload', type="pil", label="Upload"), | |
gr.Textbox(label="Room description.") | |
] | |
with gr.Column(): | |
outputs = [gr.Image(label="Generated room image")] | |
submit_btn = gr.Button("Generate!") | |
submit_btn.click(casa_ai_run_tab1, inputs=inputs, outputs=outputs) | |
gr.Examples(examples=[['example_images/image_0.jpg', 'Living room in bohemian style'], | |
['example_images/image_1.jpg', 'A minimalist and scandinavian style living room with black leather sofa'], | |
['example_images/image_2.jpg', 'Modern bedroom art deco style']], | |
inputs=inputs, outputs=outputs, fn=casa_ai_run_tab1, cache_examples=True) | |
with gr.Tab("Redesign"): | |
with gr.Row(): | |
with gr.Column(): | |
inputs = [ | |
gr.ImageEditor(sources='upload', brush=gr.Brush(colors=["#FFFFFF"]), elem_id="image_upload", type="pil", label="Upload", layers=False, eraser=True, transforms=[]), | |
gr.Textbox(label="Description for redesigning masked object")] | |
with gr.Column(): | |
outputs = [gr.Image(label="Image with new designed object")] | |
submit_btn = gr.Button("Redesign!") | |
submit_btn.click(casa_ai_run_tab2, inputs=inputs, outputs=outputs) | |
with gr.Tab("Recommendation"): | |
with gr.Row(): | |
with gr.Column(): | |
inputs = [ | |
gr.ImageEditor(sources='upload', elem_id="image_upload", type="numpy", label="Upload", layers=False, eraser=False, brush=False, transforms=['crop']), | |
] | |
with gr.Column(): | |
outputs = [gr.Gallery(label="Similar products")] | |
submit_btn = gr.Button("Find similar products!") | |
submit_btn.click(casa_ai_run_tab3, inputs=inputs, outputs=outputs) | |
with gr.Tab("Re"): | |
with gr.Row(): | |
with gr.Column(): | |
inputs = [ | |
gr.Image(sources='upload', type="numpy", label="Upload"), | |
gr.Dropdown(["Living Room", "Bedroom", "Kitchen"], label="Room Type", info="Select Room Type"), | |
gr.Dropdown(["Modern", "Minimalist", "Scandinavian"], label="Style", info="Interior Style!"), | |
] | |
with gr.Column(): | |
outputs = [gr.Image(label="Image with new designed object")] | |
submit_btn = gr.Button("Redesign!") | |
submit_btn.click(casa_ai_run_tab_sketch, inputs=inputs, outputs=outputs) | |
casa.launch() |