Spaces:
Runtime error
Runtime error
Commit
·
94f0dd7
1
Parent(s):
23442bf
added inference file
Browse files
app.py
CHANGED
@@ -1,7 +1,773 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""MWP_Solver_-_Transformer_with_Multi-head_Attention_Block (1).ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1Tn_j0k8EJ7ny_h7Pjm0stJhNMG4si_y_
|
8 |
+
"""
|
9 |
+
|
10 |
+
! pip install -q gradio
|
11 |
+
|
12 |
+
import pandas as pd
|
13 |
+
import re
|
14 |
+
import os
|
15 |
+
import time
|
16 |
+
import random
|
17 |
+
import numpy as np
|
18 |
+
|
19 |
+
import tensorflow as tf
|
20 |
+
import matplotlib.pyplot as plt
|
21 |
+
import matplotlib.ticker as ticker
|
22 |
+
from sklearn.model_selection import train_test_split
|
23 |
+
|
24 |
+
import pickle
|
25 |
+
|
26 |
+
import spacy
|
27 |
+
|
28 |
+
from nltk.translate.bleu_score import corpus_bleu
|
29 |
+
|
30 |
import gradio as gr
|
31 |
|
32 |
+
! wget -nc "https://docs.google.com/uc?export=download&id=1Y8Ee4lUs30BAfFtL3d3VjwChmbDG7O6H" -O data_final.pkl
|
33 |
+
! wget -nc --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1gAQVaxg_2mNcr8qwx0J2UwpkvoJgLu6a' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=1gAQVaxg_2mNcr8qwx0J2UwpkvoJgLu6a" -O checkpoints.zip && rm -rf /tmp/cookies.txt
|
34 |
+
|
35 |
+
! unzip -n "/content/checkpoints.zip" -d "./"
|
36 |
+
|
37 |
+
nlp = spacy.load("en_core_web_sm")
|
38 |
+
|
39 |
+
tf.__version__
|
40 |
+
|
41 |
+
with open('data_final.pkl', 'rb') as f:
|
42 |
+
df = pickle.load(f)
|
43 |
+
|
44 |
+
df.shape
|
45 |
+
|
46 |
+
df.head()
|
47 |
+
|
48 |
+
input_exps = list(df['Question'].values)
|
49 |
+
|
50 |
+
def convert_eqn(eqn):
|
51 |
+
'''
|
52 |
+
Add a space between every character in the equation string.
|
53 |
+
Eg: 'x = 23 + 88' becomes 'x = 2 3 + 8 8'
|
54 |
+
'''
|
55 |
+
elements = list(eqn)
|
56 |
+
return ' '.join(elements)
|
57 |
+
|
58 |
+
target_exps = list(df['Equation'].apply(lambda x: convert_eqn(x)).values)
|
59 |
+
|
60 |
+
# Input: Word problem
|
61 |
+
input_exps[:5]
|
62 |
+
|
63 |
+
# Target: Equation
|
64 |
+
target_exps[:5]
|
65 |
+
|
66 |
+
len(pd.Series(input_exps)), len(pd.Series(input_exps).unique())
|
67 |
+
|
68 |
+
len(pd.Series(target_exps)), len(pd.Series(target_exps).unique())
|
69 |
+
|
70 |
+
def preprocess_input(sentence):
|
71 |
+
'''
|
72 |
+
For the word problem, convert everything to lowercase, add spaces around all
|
73 |
+
punctuations and digits, and remove any extra spaces.
|
74 |
+
'''
|
75 |
+
sentence = sentence.lower().strip()
|
76 |
+
sentence = re.sub(r"([?.!,’])", r" \1 ", sentence)
|
77 |
+
sentence = re.sub(r"([0-9])", r" \1 ", sentence)
|
78 |
+
sentence = re.sub(r'[" "]+', " ", sentence)
|
79 |
+
sentence = sentence.rstrip().strip()
|
80 |
+
return sentence
|
81 |
+
|
82 |
+
def preprocess_target(sentence):
|
83 |
+
'''
|
84 |
+
For the equation, convert it to lowercase and remove extra spaces
|
85 |
+
'''
|
86 |
+
sentence = sentence.lower().strip()
|
87 |
+
return sentence
|
88 |
+
|
89 |
+
preprocessed_input_exps = list(map(preprocess_input, input_exps))
|
90 |
+
preprocessed_target_exps = list(map(preprocess_target, target_exps))
|
91 |
+
|
92 |
+
preprocessed_input_exps[:5]
|
93 |
+
|
94 |
+
preprocessed_target_exps[:5]
|
95 |
+
|
96 |
+
def tokenize(lang):
|
97 |
+
'''
|
98 |
+
Tokenize the given list of strings and return the tokenized output
|
99 |
+
along with the fitted tokenizer.
|
100 |
+
'''
|
101 |
+
lang_tokenizer = tf.keras.preprocessing.text.Tokenizer(filters='')
|
102 |
+
lang_tokenizer.fit_on_texts(lang)
|
103 |
+
tensor = lang_tokenizer.texts_to_sequences(lang)
|
104 |
+
return tensor, lang_tokenizer
|
105 |
+
|
106 |
+
input_tensor, inp_lang_tokenizer = tokenize(preprocessed_input_exps)
|
107 |
+
|
108 |
+
len(inp_lang_tokenizer.word_index)
|
109 |
+
|
110 |
+
target_tensor, targ_lang_tokenizer = tokenize(preprocessed_target_exps)
|
111 |
+
|
112 |
+
old_len = len(targ_lang_tokenizer.word_index)
|
113 |
+
|
114 |
+
def append_start_end(x,last_int):
|
115 |
+
'''
|
116 |
+
Add integers for start and end tokens for input/target exps
|
117 |
+
'''
|
118 |
+
l = []
|
119 |
+
l.append(last_int+1)
|
120 |
+
l.extend(x)
|
121 |
+
l.append(last_int+2)
|
122 |
+
return l
|
123 |
+
|
124 |
+
input_tensor_list = [append_start_end(i,len(inp_lang_tokenizer.word_index)) for i in input_tensor]
|
125 |
+
target_tensor_list = [append_start_end(i,len(targ_lang_tokenizer.word_index)) for i in target_tensor]
|
126 |
+
|
127 |
+
# Pad all sequences such that they are of equal length
|
128 |
+
input_tensor = tf.keras.preprocessing.sequence.pad_sequences(input_tensor_list, padding='post')
|
129 |
+
target_tensor = tf.keras.preprocessing.sequence.pad_sequences(target_tensor_list, padding='post')
|
130 |
+
|
131 |
+
input_tensor
|
132 |
+
|
133 |
+
target_tensor
|
134 |
+
|
135 |
+
# Here we are increasing the vocabulary size of the target, by adding a
|
136 |
+
# few extra vocabulary words (which will not actually be used) as otherwise the
|
137 |
+
# small vocab size causes issues downstream in the network.
|
138 |
+
keys = [str(i) for i in range(10,51)]
|
139 |
+
for i,k in enumerate(keys):
|
140 |
+
targ_lang_tokenizer.word_index[k]=len(targ_lang_tokenizer.word_index)+i+4
|
141 |
+
|
142 |
+
len(targ_lang_tokenizer.word_index)
|
143 |
+
|
144 |
+
# Creating training and validation sets
|
145 |
+
input_tensor_train, input_tensor_val, target_tensor_train, target_tensor_val = train_test_split(input_tensor,
|
146 |
+
target_tensor,
|
147 |
+
test_size=0.05,
|
148 |
+
random_state=42)
|
149 |
+
|
150 |
+
len(input_tensor_train)
|
151 |
+
|
152 |
+
len(input_tensor_val)
|
153 |
+
|
154 |
+
BUFFER_SIZE = len(input_tensor_train)
|
155 |
+
BATCH_SIZE = 64
|
156 |
+
steps_per_epoch = len(input_tensor_train)//BATCH_SIZE
|
157 |
+
dataset = tf.data.Dataset.from_tensor_slices((input_tensor_train, target_tensor_train)).shuffle(BUFFER_SIZE)
|
158 |
+
dataset = dataset.batch(BATCH_SIZE, drop_remainder=True)
|
159 |
+
num_layers = 4
|
160 |
+
d_model = 128
|
161 |
+
dff = 512
|
162 |
+
num_heads = 8
|
163 |
+
input_vocab_size = len(inp_lang_tokenizer.word_index)+3
|
164 |
+
target_vocab_size = len(targ_lang_tokenizer.word_index)+3
|
165 |
+
dropout_rate = 0.0
|
166 |
+
|
167 |
+
example_input_batch, example_target_batch = next(iter(dataset))
|
168 |
+
example_input_batch.shape, example_target_batch.shape
|
169 |
+
|
170 |
+
# We provide positional information about the data to the model,
|
171 |
+
# otherwise each sentence will be treated as Bag of Words
|
172 |
+
def get_angles(pos, i, d_model):
|
173 |
+
angle_rates = 1 / np.power(10000, (2 * (i//2)) / np.float32(d_model))
|
174 |
+
return pos * angle_rates
|
175 |
+
|
176 |
+
def positional_encoding(position, d_model):
|
177 |
+
angle_rads = get_angles(np.arange(position)[:, np.newaxis],
|
178 |
+
np.arange(d_model)[np.newaxis, :],
|
179 |
+
d_model)
|
180 |
+
|
181 |
+
# apply sin to even indices in the array; 2i
|
182 |
+
angle_rads[:, 0::2] = np.sin(angle_rads[:, 0::2])
|
183 |
+
|
184 |
+
# apply cos to odd indices in the array; 2i+1
|
185 |
+
angle_rads[:, 1::2] = np.cos(angle_rads[:, 1::2])
|
186 |
+
|
187 |
+
pos_encoding = angle_rads[np.newaxis, ...]
|
188 |
+
|
189 |
+
return tf.cast(pos_encoding, dtype=tf.float32)
|
190 |
+
|
191 |
+
# mask all elements are that not words (padding) so that it is not treated as input
|
192 |
+
def create_padding_mask(seq):
|
193 |
+
seq = tf.cast(tf.math.equal(seq, 0), tf.float32)
|
194 |
+
|
195 |
+
# add extra dimensions to add the padding
|
196 |
+
# to the attention logits.
|
197 |
+
return seq[:, tf.newaxis, tf.newaxis, :] # (batch_size, 1, 1, seq_len)
|
198 |
+
|
199 |
+
def create_look_ahead_mask(size):
|
200 |
+
mask = 1 - tf.linalg.band_part(tf.ones((size, size)), -1, 0)
|
201 |
+
return mask
|
202 |
+
|
203 |
+
dataset = dataset.prefetch(tf.data.experimental.AUTOTUNE)
|
204 |
+
|
205 |
+
def scaled_dot_product_attention(q, k, v, mask):
|
206 |
+
matmul_qk = tf.matmul(q, k, transpose_b=True) # (..., seq_len_q, seq_len_k)
|
207 |
+
|
208 |
+
# scale matmul_qk
|
209 |
+
dk = tf.cast(tf.shape(k)[-1], tf.float32)
|
210 |
+
scaled_attention_logits = matmul_qk / tf.math.sqrt(dk)
|
211 |
+
|
212 |
+
# add the mask to the scaled tensor.
|
213 |
+
if mask is not None:
|
214 |
+
scaled_attention_logits += (mask * -1e9)
|
215 |
+
|
216 |
+
# softmax is normalized on the last axis (seq_len_k) so that the scores
|
217 |
+
# add up to 1.
|
218 |
+
attention_weights = tf.nn.softmax(scaled_attention_logits, axis=-1) # (..., seq_len_q, seq_len_k)
|
219 |
+
|
220 |
+
output = tf.matmul(attention_weights, v) # (..., seq_len_q, depth_v)
|
221 |
+
|
222 |
+
return output, attention_weights
|
223 |
+
|
224 |
+
class MultiHeadAttention(tf.keras.layers.Layer):
|
225 |
+
def __init__(self, d_model, num_heads):
|
226 |
+
super(MultiHeadAttention, self).__init__()
|
227 |
+
self.num_heads = num_heads
|
228 |
+
self.d_model = d_model
|
229 |
+
|
230 |
+
assert d_model % self.num_heads == 0
|
231 |
+
|
232 |
+
self.depth = d_model // self.num_heads
|
233 |
+
|
234 |
+
self.wq = tf.keras.layers.Dense(d_model)
|
235 |
+
self.wk = tf.keras.layers.Dense(d_model)
|
236 |
+
self.wv = tf.keras.layers.Dense(d_model)
|
237 |
+
|
238 |
+
self.dense = tf.keras.layers.Dense(d_model)
|
239 |
+
|
240 |
+
def split_heads(self, x, batch_size):
|
241 |
+
"""Split the last dimension into (num_heads, depth).
|
242 |
+
Transpose the result such that the shape is (batch_size, num_heads, seq_len, depth)
|
243 |
+
"""
|
244 |
+
x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))
|
245 |
+
return tf.transpose(x, perm=[0, 2, 1, 3])
|
246 |
+
|
247 |
+
def call(self, v, k, q, mask):
|
248 |
+
batch_size = tf.shape(q)[0]
|
249 |
+
|
250 |
+
q = self.wq(q) # (batch_size, seq_len, d_model)
|
251 |
+
k = self.wk(k) # (batch_size, seq_len, d_model)
|
252 |
+
v = self.wv(v) # (batch_size, seq_len, d_model)
|
253 |
+
|
254 |
+
q = self.split_heads(q, batch_size) # (batch_size, num_heads, seq_len_q, depth)
|
255 |
+
k = self.split_heads(k, batch_size) # (batch_size, num_heads, seq_len_k, depth)
|
256 |
+
v = self.split_heads(v, batch_size) # (batch_size, num_heads, seq_len_v, depth)
|
257 |
+
|
258 |
+
# scaled_attention.shape == (batch_size, num_heads, seq_len_q, depth)
|
259 |
+
# attention_weights.shape == (batch_size, num_heads, seq_len_q, seq_len_k)
|
260 |
+
scaled_attention, attention_weights = scaled_dot_product_attention(
|
261 |
+
q, k, v, mask)
|
262 |
+
|
263 |
+
scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3]) # (batch_size, seq_len_q, num_heads, depth)
|
264 |
+
|
265 |
+
concat_attention = tf.reshape(scaled_attention,
|
266 |
+
(batch_size, -1, self.d_model)) # (batch_size, seq_len_q, d_model)
|
267 |
+
|
268 |
+
output = self.dense(concat_attention) # (batch_size, seq_len_q, d_model)
|
269 |
+
|
270 |
+
return output, attention_weights
|
271 |
+
|
272 |
+
def point_wise_feed_forward_network(d_model, dff):
|
273 |
+
return tf.keras.Sequential([
|
274 |
+
tf.keras.layers.Dense(dff, activation='relu'), # (batch_size, seq_len, dff)
|
275 |
+
tf.keras.layers.Dense(d_model) # (batch_size, seq_len, d_model)
|
276 |
+
])
|
277 |
+
|
278 |
+
class EncoderLayer(tf.keras.layers.Layer):
|
279 |
+
def __init__(self, d_model, num_heads, dff, rate=0.1):
|
280 |
+
super(EncoderLayer, self).__init__()
|
281 |
+
|
282 |
+
self.mha = MultiHeadAttention(d_model, num_heads)
|
283 |
+
self.ffn = point_wise_feed_forward_network(d_model, dff)
|
284 |
+
|
285 |
+
# normalize data per feature instead of batch
|
286 |
+
self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
|
287 |
+
self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
|
288 |
+
|
289 |
+
self.dropout1 = tf.keras.layers.Dropout(rate)
|
290 |
+
self.dropout2 = tf.keras.layers.Dropout(rate)
|
291 |
+
|
292 |
+
def call(self, x, training, mask):
|
293 |
+
# Multi-head attention layer
|
294 |
+
attn_output, _ = self.mha(x, x, x, mask)
|
295 |
+
attn_output = self.dropout1(attn_output, training=training)
|
296 |
+
# add residual connection to avoid vanishing gradient problem
|
297 |
+
out1 = self.layernorm1(x + attn_output)
|
298 |
+
|
299 |
+
# Feedforward layer
|
300 |
+
ffn_output = self.ffn(out1)
|
301 |
+
ffn_output = self.dropout2(ffn_output, training=training)
|
302 |
+
# add residual connection to avoid vanishing gradient problem
|
303 |
+
out2 = self.layernorm2(out1 + ffn_output)
|
304 |
+
return out2
|
305 |
+
|
306 |
+
class Encoder(tf.keras.layers.Layer):
|
307 |
+
def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size,
|
308 |
+
maximum_position_encoding, rate=0.1):
|
309 |
+
super(Encoder, self).__init__()
|
310 |
+
|
311 |
+
self.d_model = d_model
|
312 |
+
self.num_layers = num_layers
|
313 |
+
|
314 |
+
self.embedding = tf.keras.layers.Embedding(input_vocab_size, d_model)
|
315 |
+
self.pos_encoding = positional_encoding(maximum_position_encoding,
|
316 |
+
self.d_model)
|
317 |
+
|
318 |
+
# Create encoder layers (count: num_layers)
|
319 |
+
self.enc_layers = [EncoderLayer(d_model, num_heads, dff, rate)
|
320 |
+
for _ in range(num_layers)]
|
321 |
+
|
322 |
+
self.dropout = tf.keras.layers.Dropout(rate)
|
323 |
+
|
324 |
+
def call(self, x, training, mask):
|
325 |
+
|
326 |
+
seq_len = tf.shape(x)[1]
|
327 |
+
|
328 |
+
# adding embedding and position encoding.
|
329 |
+
x = self.embedding(x)
|
330 |
+
x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
|
331 |
+
x += self.pos_encoding[:, :seq_len, :]
|
332 |
+
|
333 |
+
x = self.dropout(x, training=training)
|
334 |
+
|
335 |
+
for i in range(self.num_layers):
|
336 |
+
x = self.enc_layers[i](x, training, mask)
|
337 |
+
|
338 |
+
return x
|
339 |
+
|
340 |
+
class DecoderLayer(tf.keras.layers.Layer):
|
341 |
+
def __init__(self, d_model, num_heads, dff, rate=0.1):
|
342 |
+
super(DecoderLayer, self).__init__()
|
343 |
+
|
344 |
+
self.mha1 = MultiHeadAttention(d_model, num_heads)
|
345 |
+
self.mha2 = MultiHeadAttention(d_model, num_heads)
|
346 |
+
|
347 |
+
self.ffn = point_wise_feed_forward_network(d_model, dff)
|
348 |
+
|
349 |
+
self.layernorm1 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
|
350 |
+
self.layernorm2 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
|
351 |
+
self.layernorm3 = tf.keras.layers.LayerNormalization(epsilon=1e-6)
|
352 |
+
|
353 |
+
self.dropout1 = tf.keras.layers.Dropout(rate)
|
354 |
+
self.dropout2 = tf.keras.layers.Dropout(rate)
|
355 |
+
self.dropout3 = tf.keras.layers.Dropout(rate)
|
356 |
+
|
357 |
+
|
358 |
+
def call(self, x, enc_output, training,
|
359 |
+
look_ahead_mask, padding_mask):
|
360 |
+
|
361 |
+
# Masked multihead attention layer (padding + look-ahead)
|
362 |
+
attn1, attn_weights_block1 = self.mha1(x, x, x, look_ahead_mask)
|
363 |
+
attn1 = self.dropout1(attn1, training=training)
|
364 |
+
# again add residual connection
|
365 |
+
out1 = self.layernorm1(attn1 + x)
|
366 |
+
|
367 |
+
# Masked multihead attention layer (only padding)
|
368 |
+
# with input from encoder as Key and Value, and input from previous layer as Query
|
369 |
+
attn2, attn_weights_block2 = self.mha2(
|
370 |
+
enc_output, enc_output, out1, padding_mask)
|
371 |
+
attn2 = self.dropout2(attn2, training=training)
|
372 |
+
# again add residual connection
|
373 |
+
out2 = self.layernorm2(attn2 + out1)
|
374 |
+
|
375 |
+
# Feedforward layer
|
376 |
+
ffn_output = self.ffn(out2)
|
377 |
+
ffn_output = self.dropout3(ffn_output, training=training)
|
378 |
+
# again add residual connection
|
379 |
+
out3 = self.layernorm3(ffn_output + out2)
|
380 |
+
return out3, attn_weights_block1, attn_weights_block2
|
381 |
+
|
382 |
+
class Decoder(tf.keras.layers.Layer):
|
383 |
+
def __init__(self, num_layers, d_model, num_heads, dff, target_vocab_size,
|
384 |
+
maximum_position_encoding, rate=0.1):
|
385 |
+
super(Decoder, self).__init__()
|
386 |
+
|
387 |
+
self.d_model = d_model
|
388 |
+
self.num_layers = num_layers
|
389 |
+
|
390 |
+
self.embedding = tf.keras.layers.Embedding(target_vocab_size, d_model)
|
391 |
+
self.pos_encoding = positional_encoding(maximum_position_encoding, d_model)
|
392 |
+
|
393 |
+
# Create decoder layers (count: num_layers)
|
394 |
+
self.dec_layers = [DecoderLayer(d_model, num_heads, dff, rate)
|
395 |
+
for _ in range(num_layers)]
|
396 |
+
self.dropout = tf.keras.layers.Dropout(rate)
|
397 |
+
|
398 |
+
def call(self, x, enc_output, training,
|
399 |
+
look_ahead_mask, padding_mask):
|
400 |
+
|
401 |
+
seq_len = tf.shape(x)[1]
|
402 |
+
attention_weights = {}
|
403 |
+
|
404 |
+
x = self.embedding(x) # (batch_size, target_seq_len, d_model)
|
405 |
+
|
406 |
+
x *= tf.math.sqrt(tf.cast(self.d_model, tf.float32))
|
407 |
+
|
408 |
+
x += self.pos_encoding[:,:seq_len,:]
|
409 |
+
|
410 |
+
x = self.dropout(x, training=training)
|
411 |
+
|
412 |
+
for i in range(self.num_layers):
|
413 |
+
x, block1, block2 = self.dec_layers[i](x, enc_output, training,
|
414 |
+
look_ahead_mask, padding_mask)
|
415 |
+
|
416 |
+
# store attenion weights, they can be used to visualize while translating
|
417 |
+
attention_weights['decoder_layer{}_block1'.format(i+1)] = block1
|
418 |
+
attention_weights['decoder_layer{}_block2'.format(i+1)] = block2
|
419 |
+
|
420 |
+
return x, attention_weights
|
421 |
+
|
422 |
+
class Transformer(tf.keras.Model):
|
423 |
+
def __init__(self, num_layers, d_model, num_heads, dff, input_vocab_size,
|
424 |
+
target_vocab_size, pe_input, pe_target, rate=0.1):
|
425 |
+
super(Transformer, self).__init__()
|
426 |
+
|
427 |
+
self.encoder = Encoder(num_layers, d_model, num_heads, dff,
|
428 |
+
input_vocab_size, pe_input, rate)
|
429 |
+
|
430 |
+
self.decoder = Decoder(num_layers, d_model, num_heads, dff,
|
431 |
+
target_vocab_size, pe_target, rate)
|
432 |
+
|
433 |
+
self.final_layer = tf.keras.layers.Dense(target_vocab_size)
|
434 |
+
|
435 |
+
def call(self, inp, tar, training, enc_padding_mask,
|
436 |
+
look_ahead_mask, dec_padding_mask):
|
437 |
+
|
438 |
+
# Pass the input to the encoder
|
439 |
+
enc_output = self.encoder(inp, training, enc_padding_mask)
|
440 |
+
|
441 |
+
# Pass the encoder output to the decoder
|
442 |
+
dec_output, attention_weights = self.decoder(
|
443 |
+
tar, enc_output, training, look_ahead_mask, dec_padding_mask)
|
444 |
+
|
445 |
+
# Pass the decoder output to the last linear layer
|
446 |
+
final_output = self.final_layer(dec_output)
|
447 |
+
|
448 |
+
return final_output, attention_weights
|
449 |
+
|
450 |
+
class CustomSchedule(tf.keras.optimizers.schedules.LearningRateSchedule):
|
451 |
+
def __init__(self, d_model, warmup_steps=4000):
|
452 |
+
super(CustomSchedule, self).__init__()
|
453 |
+
|
454 |
+
self.d_model = d_model
|
455 |
+
self.d_model = tf.cast(self.d_model, tf.float32)
|
456 |
+
|
457 |
+
self.warmup_steps = warmup_steps
|
458 |
+
|
459 |
+
def __call__(self, step):
|
460 |
+
arg1 = tf.math.rsqrt(step)
|
461 |
+
arg2 = step * (self.warmup_steps ** -1.5)
|
462 |
+
|
463 |
+
return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2)
|
464 |
+
|
465 |
+
learning_rate = CustomSchedule(d_model)
|
466 |
+
|
467 |
+
# Adam optimizer with a custom learning rate
|
468 |
+
optimizer = tf.keras.optimizers.Adam(learning_rate, beta_1=0.9, beta_2=0.98,
|
469 |
+
epsilon=1e-9)
|
470 |
+
|
471 |
+
loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
|
472 |
+
from_logits=True, reduction='none')
|
473 |
+
|
474 |
+
def loss_function(real, pred):
|
475 |
+
# Apply a mask to paddings (0)
|
476 |
+
mask = tf.math.logical_not(tf.math.equal(real, 0))
|
477 |
+
loss_ = loss_object(real, pred)
|
478 |
+
|
479 |
+
mask = tf.cast(mask, dtype=loss_.dtype)
|
480 |
+
loss_ *= mask
|
481 |
+
|
482 |
+
return tf.reduce_mean(loss_)
|
483 |
+
|
484 |
+
train_loss = tf.keras.metrics.Mean(name='train_loss')
|
485 |
+
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(
|
486 |
+
name='train_accuracy')
|
487 |
+
|
488 |
+
transformer = Transformer(num_layers, d_model, num_heads, dff,
|
489 |
+
input_vocab_size, target_vocab_size,
|
490 |
+
pe_input=input_vocab_size,
|
491 |
+
pe_target=target_vocab_size,
|
492 |
+
rate=dropout_rate)
|
493 |
+
|
494 |
+
def create_masks(inp, tar):
|
495 |
+
# Encoder padding mask
|
496 |
+
enc_padding_mask = create_padding_mask(inp)
|
497 |
+
|
498 |
+
# Decoder padding mask
|
499 |
+
dec_padding_mask = create_padding_mask(inp)
|
500 |
+
|
501 |
+
# Look ahead mask (for hiding the rest of the sequence in the 1st decoder attention layer)
|
502 |
+
look_ahead_mask = create_look_ahead_mask(tf.shape(tar)[1])
|
503 |
+
dec_target_padding_mask = create_padding_mask(tar)
|
504 |
+
combined_mask = tf.maximum(dec_target_padding_mask, look_ahead_mask)
|
505 |
+
|
506 |
+
return enc_padding_mask, combined_mask, dec_padding_mask
|
507 |
+
|
508 |
+
# drive_root = '/gdrive/My Drive/'
|
509 |
+
drive_root = './'
|
510 |
+
|
511 |
+
checkpoint_dir = os.path.join(drive_root, "checkpoints")
|
512 |
+
checkpoint_dir = os.path.join(checkpoint_dir, "training_checkpoints/moops_transfomer")
|
513 |
+
|
514 |
+
print("Checkpoints directory is", checkpoint_dir)
|
515 |
+
if os.path.exists(checkpoint_dir):
|
516 |
+
print("Checkpoints folder already exists")
|
517 |
+
else:
|
518 |
+
print("Creating a checkpoints directory")
|
519 |
+
os.makedirs(checkpoint_dir)
|
520 |
+
|
521 |
+
|
522 |
+
checkpoint = tf.train.Checkpoint(transformer=transformer,
|
523 |
+
optimizer=optimizer)
|
524 |
+
|
525 |
+
ckpt_manager = tf.train.CheckpointManager(checkpoint, checkpoint_dir, max_to_keep=5)
|
526 |
+
|
527 |
+
latest = ckpt_manager.latest_checkpoint
|
528 |
+
latest
|
529 |
+
|
530 |
+
if latest:
|
531 |
+
epoch_num = int(latest.split('/')[-1].split('-')[-1])
|
532 |
+
checkpoint.restore(latest)
|
533 |
+
print ('Latest checkpoint restored!!')
|
534 |
+
else:
|
535 |
+
epoch_num = 0
|
536 |
+
|
537 |
+
epoch_num
|
538 |
+
|
539 |
+
# EPOCHS = 17
|
540 |
+
|
541 |
+
# def train_step(inp, tar):
|
542 |
+
# tar_inp = tar[:, :-1]
|
543 |
+
# tar_real = tar[:, 1:]
|
544 |
+
|
545 |
+
# enc_padding_mask, combined_mask, dec_padding_mask = create_masks(inp, tar_inp)
|
546 |
+
|
547 |
+
# with tf.GradientTape() as tape:
|
548 |
+
# predictions, _ = transformer(inp, tar_inp,
|
549 |
+
# True,
|
550 |
+
# enc_padding_mask,
|
551 |
+
# combined_mask,
|
552 |
+
# dec_padding_mask)
|
553 |
+
# loss = loss_function(tar_real, predictions)
|
554 |
+
|
555 |
+
# gradients = tape.gradient(loss, transformer.trainable_variables)
|
556 |
+
# optimizer.apply_gradients(zip(gradients, transformer.trainable_variables))
|
557 |
+
|
558 |
+
# train_loss(loss)
|
559 |
+
# train_accuracy(tar_real, predictions)
|
560 |
+
|
561 |
+
# for epoch in range(epoch_num, EPOCHS):
|
562 |
+
# start = time.time()
|
563 |
+
|
564 |
+
# train_loss.reset_states()
|
565 |
+
# train_accuracy.reset_states()
|
566 |
+
|
567 |
+
# # inp -> question, tar -> equation
|
568 |
+
# for (batch, (inp, tar)) in enumerate(dataset):
|
569 |
+
# train_step(inp, tar)
|
570 |
+
|
571 |
+
# if batch % 50 == 0:
|
572 |
+
# print ('Epoch {} Batch {} Loss {:.4f} Accuracy {:.4f}'.format(
|
573 |
+
# epoch + 1, batch, train_loss.result(), train_accuracy.result()))
|
574 |
+
|
575 |
+
# ckpt_save_path = ckpt_manager.save()
|
576 |
+
# print ('Saving checkpoint for epoch {} at {}'.format(epoch+1,
|
577 |
+
# ckpt_save_path))
|
578 |
+
|
579 |
+
# print ('Epoch {} Loss {:.4f} Accuracy {:.4f}'.format(epoch + 1,
|
580 |
+
# train_loss.result(),
|
581 |
+
# train_accuracy.result()))
|
582 |
+
|
583 |
+
# print ('Time taken for 1 epoch: {} secs\n'.format(time.time() - start))
|
584 |
+
|
585 |
+
def evaluate(inp_sentence):
|
586 |
+
start_token = [len(inp_lang_tokenizer.word_index)+1]
|
587 |
+
end_token = [len(inp_lang_tokenizer.word_index)+2]
|
588 |
+
|
589 |
+
# inp sentence is the word problem, hence adding the start and end token
|
590 |
+
inp_sentence = start_token + [inp_lang_tokenizer.word_index.get(i, inp_lang_tokenizer.word_index['john']) for i in preprocess_input(inp_sentence).split(' ')] + end_token
|
591 |
+
encoder_input = tf.expand_dims(inp_sentence, 0)
|
592 |
+
|
593 |
+
# start with equation's start token
|
594 |
+
decoder_input = [old_len+1]
|
595 |
+
output = tf.expand_dims(decoder_input, 0)
|
596 |
+
|
597 |
+
for i in range(MAX_LENGTH):
|
598 |
+
enc_padding_mask, combined_mask, dec_padding_mask = create_masks(
|
599 |
+
encoder_input, output)
|
600 |
+
|
601 |
+
predictions, attention_weights = transformer(encoder_input,
|
602 |
+
output,
|
603 |
+
False,
|
604 |
+
enc_padding_mask,
|
605 |
+
combined_mask,
|
606 |
+
dec_padding_mask)
|
607 |
+
|
608 |
+
# select the last word from the seq_len dimension
|
609 |
+
predictions = predictions[: ,-1:, :]
|
610 |
+
predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32)
|
611 |
+
|
612 |
+
# return the result if the predicted_id is equal to the end token
|
613 |
+
if predicted_id == old_len+2:
|
614 |
+
return tf.squeeze(output, axis=0), attention_weights
|
615 |
+
|
616 |
+
# concatentate the predicted_id to the output which is given to the decoder
|
617 |
+
# as its input.
|
618 |
+
output = tf.concat([output, predicted_id], axis=-1)
|
619 |
+
return tf.squeeze(output, axis=0), attention_weights
|
620 |
+
|
621 |
+
# def plot_attention_weights(attention, sentence, result, layer):
|
622 |
+
# fig = plt.figure(figsize=(16, 8))
|
623 |
+
|
624 |
+
# sentence = preprocess_input(sentence)
|
625 |
+
|
626 |
+
# attention = tf.squeeze(attention[layer], axis=0)
|
627 |
+
|
628 |
+
# for head in range(attention.shape[0]):
|
629 |
+
# ax = fig.add_subplot(2, 4, head+1)
|
630 |
+
|
631 |
+
# # plot the attention weights
|
632 |
+
# ax.matshow(attention[head][:-1, :], cmap='viridis')
|
633 |
+
|
634 |
+
# fontdict = {'fontsize': 10}
|
635 |
+
|
636 |
+
# ax.set_xticks(range(len(sentence.split(' '))+2))
|
637 |
+
# ax.set_yticks(range(len([targ_lang_tokenizer.index_word[i] for i in list(result.numpy())
|
638 |
+
# if i < len(targ_lang_tokenizer.word_index) and i not in [0,old_len+1,old_len+2]])+3))
|
639 |
+
|
640 |
+
|
641 |
+
# ax.set_ylim(len([targ_lang_tokenizer.index_word[i] for i in list(result.numpy())
|
642 |
+
# if i < len(targ_lang_tokenizer.word_index) and i not in [0,old_len+1,old_len+2]]), -0.5)
|
643 |
+
|
644 |
+
# ax.set_xticklabels(
|
645 |
+
# ['<start>']+sentence.split(' ')+['<end>'],
|
646 |
+
# fontdict=fontdict, rotation=90)
|
647 |
+
|
648 |
+
# ax.set_yticklabels([targ_lang_tokenizer.index_word[i] for i in list(result.numpy())
|
649 |
+
# if i < len(targ_lang_tokenizer.word_index) and i not in [0,old_len+1,old_len+2]],
|
650 |
+
# fontdict=fontdict)
|
651 |
+
|
652 |
+
# ax.set_xlabel('Head {}'.format(head+1))
|
653 |
+
|
654 |
+
# plt.tight_layout()
|
655 |
+
# plt.show()
|
656 |
+
|
657 |
+
MAX_LENGTH = 40
|
658 |
+
|
659 |
+
def translate(sentence, plot=''):
|
660 |
+
|
661 |
+
|
662 |
+
|
663 |
+
result, attention_weights = evaluate(sentence)
|
664 |
+
|
665 |
+
# use the result tokens to convert prediction into a list of characters
|
666 |
+
# (not inclusing padding, start and end tokens)
|
667 |
+
predicted_sentence = [targ_lang_tokenizer.index_word[i] for i in list(result.numpy()) if (i < len(targ_lang_tokenizer.word_index) and i not in [0,46,47])]
|
668 |
+
|
669 |
+
# print('Input: {}'.format(sentence))
|
670 |
+
return ''.join(predicted_sentence)
|
671 |
+
|
672 |
+
if plot:
|
673 |
+
plot_attention_weights(attention_weights, sentence, result, plot)
|
674 |
+
|
675 |
+
# def evaluate_results(inp_sentence):
|
676 |
+
# start_token = [len(inp_lang_tokenizer.word_index)+1]
|
677 |
+
# end_token = [len(inp_lang_tokenizer.word_index)+2]
|
678 |
+
|
679 |
+
# # inp sentence is the word problem, hence adding the start and end token
|
680 |
+
# inp_sentence = start_token + list(inp_sentence.numpy()[0]) + end_token
|
681 |
+
|
682 |
+
# encoder_input = tf.expand_dims(inp_sentence, 0)
|
683 |
+
|
684 |
+
|
685 |
+
# decoder_input = [old_len+1]
|
686 |
+
# output = tf.expand_dims(decoder_input, 0)
|
687 |
+
|
688 |
+
# for i in range(MAX_LENGTH):
|
689 |
+
# enc_padding_mask, combined_mask, dec_padding_mask = create_masks(
|
690 |
+
# encoder_input, output)
|
691 |
+
|
692 |
+
# # predictions.shape == (batch_size, seq_len, vocab_size)
|
693 |
+
# predictions, attention_weights = transformer(encoder_input,
|
694 |
+
# output,
|
695 |
+
# False,
|
696 |
+
# enc_padding_mask,
|
697 |
+
# combined_mask,
|
698 |
+
# dec_padding_mask)
|
699 |
+
|
700 |
+
# # select the last word from the seq_len dimension
|
701 |
+
# predictions = predictions[: ,-1:, :] # (batch_size, 1, vocab_size)
|
702 |
+
|
703 |
+
# predicted_id = tf.cast(tf.argmax(predictions, axis=-1), tf.int32)
|
704 |
+
|
705 |
+
# # return the result if the predicted_id is equal to the end token
|
706 |
+
# if predicted_id == old_len+2:
|
707 |
+
# return tf.squeeze(output, axis=0), attention_weights
|
708 |
+
|
709 |
+
# # concatentate the predicted_id to the output which is given to the decoder
|
710 |
+
# # as its input.
|
711 |
+
# output = tf.concat([output, predicted_id], axis=-1)
|
712 |
+
|
713 |
+
# return tf.squeeze(output, axis=0), attention_weights
|
714 |
+
|
715 |
+
# dataset_val = tf.data.Dataset.from_tensor_slices((input_tensor_val, target_tensor_val)).shuffle(BUFFER_SIZE)
|
716 |
+
# dataset_val = dataset_val.batch(1, drop_remainder=True)
|
717 |
+
|
718 |
+
# y_true = []
|
719 |
+
# y_pred = []
|
720 |
+
# acc_cnt = 0
|
721 |
+
|
722 |
+
# a = 0
|
723 |
+
# for (inp_val_batch, target_val_batch) in iter(dataset_val):
|
724 |
+
# a += 1
|
725 |
+
# if a % 100 == 0:
|
726 |
+
# print(a)
|
727 |
+
# print("Accuracy count: ",acc_cnt)
|
728 |
+
# print('------------------')
|
729 |
+
# target_sentence = ''
|
730 |
+
# for i in target_val_batch.numpy()[0]:
|
731 |
+
# if i not in [0,old_len+1,old_len+2]:
|
732 |
+
# target_sentence += (targ_lang_tokenizer.index_word[i] + ' ')
|
733 |
+
|
734 |
+
# y_true.append([target_sentence.split(' ')[:-1]])
|
735 |
+
|
736 |
+
# result, _ = evaluate_results(inp_val_batch)
|
737 |
+
# predicted_sentence = [targ_lang_tokenizer.index_word[i] for i in list(result.numpy()) if (i < len(targ_lang_tokenizer.word_index) and i not in [0,old_len+1,old_len+2])]
|
738 |
+
# y_pred.append(predicted_sentence)
|
739 |
+
|
740 |
+
# if target_sentence.split(' ')[:-1] == predicted_sentence:
|
741 |
+
# acc_cnt += 1
|
742 |
+
|
743 |
+
# len(y_true), len(y_pred)
|
744 |
+
|
745 |
+
# print('Corpus BLEU score of the model: ', corpus_bleu(y_true, y_pred))
|
746 |
+
|
747 |
+
# print('Accuracy of the model: ', acc_cnt/len(input_tensor_val))
|
748 |
+
|
749 |
+
check_str = ' '.join([inp_lang_tokenizer.index_word[i] for i in input_tensor_val[242] if i not in [0,
|
750 |
+
len(inp_lang_tokenizer.word_index)+1,
|
751 |
+
len(inp_lang_tokenizer.word_index)+2]])
|
752 |
+
|
753 |
+
check_str
|
754 |
+
|
755 |
+
translate(check_str)
|
756 |
+
|
757 |
+
#'victor had some car . john took 3 0 from him . now victor has 6 8 car . how many car victor had originally ?'
|
758 |
+
translate('Nafis had 31 raspberry . He slice each raspberry into 19 slices . How many raspberry slices did Denise make?')
|
759 |
|
760 |
+
interface = gr.Interface(
|
761 |
+
fn = translate,
|
762 |
+
inputs = 'text',
|
763 |
+
outputs = 'text',
|
764 |
+
examples = [
|
765 |
+
['Denise had 31 raspberry. He slice each raspberry into 19 slices. How many raspberry slices did Denise make?'],
|
766 |
+
['Cynthia snap up 14 bags of blueberry. how many blueberry in each bag? If total 94 blueberry Cynthia snap up.'],
|
767 |
+
['Donald had some Watch. Jonathan gave him 7 more. Now Donald has 18 Watch. How many Watch did Donald have initially?']
|
768 |
+
],
|
769 |
+
theme = 'grass',
|
770 |
+
title = 'Mathbot',
|
771 |
+
description = 'Enter a simple math word problem and our AI will try to predict an expression to solve it. Mathbot occasionally makes mistakes. Feel free to press "flag" if you encounter such a scenario.',
|
772 |
+
)
|
773 |
+
interface.launch()
|