Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,21 +1,33 @@
|
|
1 |
-
import os
|
2 |
-
import numpy as np
|
3 |
import gradio as gr
|
4 |
-
|
5 |
import tensorflow as tf
|
6 |
from tensorflow.keras.models import load_model
|
|
|
|
|
|
|
7 |
|
8 |
#CloudDeploymentTest/
|
9 |
-
model = load_model(
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
prediction = model.predict(np.array([input_img])/255) #/255 to normalize (rgb)
|
14 |
prediction = np.argmax(prediction)
|
15 |
-
prediction = labels[prediction]
|
16 |
-
return prediction
|
17 |
|
18 |
-
|
|
|
19 |
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import tensorflow as tf
|
3 |
from tensorflow.keras.models import load_model
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
class_names = ["bird", "cat", "deer", "dog"]
|
7 |
|
8 |
#CloudDeploymentTest/
|
9 |
+
model = load_model("model.keras")
|
10 |
+
|
11 |
+
def classify(input_img):
|
12 |
+
# We need to "normalize" the input.
|
13 |
+
# Input pixels are between 0 and 255,
|
14 |
+
# but neural net expects values 0 to 1.
|
15 |
+
input_img = np.array(input_img) / 255
|
16 |
+
|
17 |
+
# Add a batch dimension of size 1.
|
18 |
+
input_img = np.array([input_img])
|
19 |
+
|
20 |
+
# Run our image through the model.
|
21 |
+
prediction = model.predict(input_img)
|
22 |
+
|
23 |
+
# Remove batch dimension from output.
|
24 |
+
prediction = prediction[0]
|
25 |
|
26 |
+
# Turn softmax output into index.
|
|
|
27 |
prediction = np.argmax(prediction)
|
|
|
|
|
28 |
|
29 |
+
# Turn index into class name
|
30 |
+
return class_names[prediction]
|
31 |
|
32 |
+
demo = gr.Interface(classify, gr.Image(), "text")
|
33 |
+
demo.launch()
|