import gradio as gr from PIL import Image #import tensorflow as tf #from tensorflow.keras.models import load_model #import numpy as np # Use a pipeline as a high-level helper from transformers import pipeline pipe = pipeline("image-to-text", model="Flova/omr_transformer") # # Load model directly # from transformers import AutoTokenizer, AutoModel # tokenizer = AutoTokenizer.from_pretrained("Flova/omr_transformer") # model = AutoModel.from_pretrained("Flova/omr_transformer") # Using Flova/omr_transformer def notation_2_note(input_img): prediction = pipe(Image.fromarray(input_img)) #print(type(prediction)) output_text = prediction[0]['generated_text'] return output_text demo = gr.Interface(notation_2_note, gr.Image(), "text") demo.launch()