File size: 2,185 Bytes
20f348c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import os
from time import sleep

from core.model_runtime.entities.text_embedding_entities import TextEmbeddingResult
from core.model_runtime.model_providers.wenxin.text_embedding.text_embedding import WenxinTextEmbeddingModel


def test_invoke_embedding_v1():
    sleep(3)
    model = WenxinTextEmbeddingModel()

    response = model.invoke(
        model="embedding-v1",
        credentials={"api_key": os.environ.get("WENXIN_API_KEY"), "secret_key": os.environ.get("WENXIN_SECRET_KEY")},
        texts=["hello", "你好", "xxxxx"],
        user="abc-123",
    )

    assert isinstance(response, TextEmbeddingResult)
    assert len(response.embeddings) == 3
    assert isinstance(response.embeddings[0], list)


def test_invoke_embedding_bge_large_en():
    sleep(3)
    model = WenxinTextEmbeddingModel()

    response = model.invoke(
        model="bge-large-en",
        credentials={"api_key": os.environ.get("WENXIN_API_KEY"), "secret_key": os.environ.get("WENXIN_SECRET_KEY")},
        texts=["hello", "你好", "xxxxx"],
        user="abc-123",
    )

    assert isinstance(response, TextEmbeddingResult)
    assert len(response.embeddings) == 3
    assert isinstance(response.embeddings[0], list)


def test_invoke_embedding_bge_large_zh():
    sleep(3)
    model = WenxinTextEmbeddingModel()

    response = model.invoke(
        model="bge-large-zh",
        credentials={"api_key": os.environ.get("WENXIN_API_KEY"), "secret_key": os.environ.get("WENXIN_SECRET_KEY")},
        texts=["hello", "你好", "xxxxx"],
        user="abc-123",
    )

    assert isinstance(response, TextEmbeddingResult)
    assert len(response.embeddings) == 3
    assert isinstance(response.embeddings[0], list)


def test_invoke_embedding_tao_8k():
    sleep(3)
    model = WenxinTextEmbeddingModel()

    response = model.invoke(
        model="tao-8k",
        credentials={"api_key": os.environ.get("WENXIN_API_KEY"), "secret_key": os.environ.get("WENXIN_SECRET_KEY")},
        texts=["hello", "你好", "xxxxx"],
        user="abc-123",
    )

    assert isinstance(response, TextEmbeddingResult)
    assert len(response.embeddings) == 3
    assert isinstance(response.embeddings[0], list)