dify / api /services /dataset_service.py
CatPtain's picture
Upload 697 files
20f348c verified
raw
history blame
99.8 kB
import datetime
import json
import logging
import random
import time
import uuid
from collections import Counter
from typing import Any, Optional
from flask_login import current_user # type: ignore
from sqlalchemy import func
from werkzeug.exceptions import NotFound
from configs import dify_config
from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from core.rag.index_processor.constant.index_type import IndexType
from core.rag.retrieval.retrieval_methods import RetrievalMethod
from events.dataset_event import dataset_was_deleted
from events.document_event import document_was_deleted
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from libs import helper
from models.account import Account, TenantAccountRole
from models.dataset import (
AppDatasetJoin,
ChildChunk,
Dataset,
DatasetAutoDisableLog,
DatasetCollectionBinding,
DatasetPermission,
DatasetPermissionEnum,
DatasetProcessRule,
DatasetQuery,
Document,
DocumentSegment,
ExternalKnowledgeBindings,
)
from models.model import UploadFile
from models.source import DataSourceOauthBinding
from services.entities.knowledge_entities.knowledge_entities import (
ChildChunkUpdateArgs,
KnowledgeConfig,
MetaDataConfig,
RerankingModel,
RetrievalModel,
SegmentUpdateArgs,
)
from services.errors.account import InvalidActionError, NoPermissionError
from services.errors.chunk import ChildChunkDeleteIndexError, ChildChunkIndexingError
from services.errors.dataset import DatasetNameDuplicateError
from services.errors.document import DocumentIndexingError
from services.errors.file import FileNotExistsError
from services.external_knowledge_service import ExternalDatasetService
from services.feature_service import FeatureModel, FeatureService
from services.tag_service import TagService
from services.vector_service import VectorService
from tasks.batch_clean_document_task import batch_clean_document_task
from tasks.clean_notion_document_task import clean_notion_document_task
from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
from tasks.delete_segment_from_index_task import delete_segment_from_index_task
from tasks.disable_segment_from_index_task import disable_segment_from_index_task
from tasks.disable_segments_from_index_task import disable_segments_from_index_task
from tasks.document_indexing_task import document_indexing_task
from tasks.document_indexing_update_task import document_indexing_update_task
from tasks.duplicate_document_indexing_task import duplicate_document_indexing_task
from tasks.enable_segments_to_index_task import enable_segments_to_index_task
from tasks.recover_document_indexing_task import recover_document_indexing_task
from tasks.retry_document_indexing_task import retry_document_indexing_task
from tasks.sync_website_document_indexing_task import sync_website_document_indexing_task
class DatasetService:
@staticmethod
def get_datasets(page, per_page, tenant_id=None, user=None, search=None, tag_ids=None, include_all=False):
query = Dataset.query.filter(Dataset.tenant_id == tenant_id).order_by(Dataset.created_at.desc())
if user:
# get permitted dataset ids
dataset_permission = DatasetPermission.query.filter_by(account_id=user.id, tenant_id=tenant_id).all()
permitted_dataset_ids = {dp.dataset_id for dp in dataset_permission} if dataset_permission else None
if user.current_role == TenantAccountRole.DATASET_OPERATOR:
# only show datasets that the user has permission to access
if permitted_dataset_ids:
query = query.filter(Dataset.id.in_(permitted_dataset_ids))
else:
return [], 0
else:
if user.current_role != TenantAccountRole.OWNER or not include_all:
# show all datasets that the user has permission to access
if permitted_dataset_ids:
query = query.filter(
db.or_(
Dataset.permission == DatasetPermissionEnum.ALL_TEAM,
db.and_(
Dataset.permission == DatasetPermissionEnum.ONLY_ME, Dataset.created_by == user.id
),
db.and_(
Dataset.permission == DatasetPermissionEnum.PARTIAL_TEAM,
Dataset.id.in_(permitted_dataset_ids),
),
)
)
else:
query = query.filter(
db.or_(
Dataset.permission == DatasetPermissionEnum.ALL_TEAM,
db.and_(
Dataset.permission == DatasetPermissionEnum.ONLY_ME, Dataset.created_by == user.id
),
)
)
else:
# if no user, only show datasets that are shared with all team members
query = query.filter(Dataset.permission == DatasetPermissionEnum.ALL_TEAM)
if search:
query = query.filter(Dataset.name.ilike(f"%{search}%"))
if tag_ids:
target_ids = TagService.get_target_ids_by_tag_ids("knowledge", tenant_id, tag_ids)
if target_ids:
query = query.filter(Dataset.id.in_(target_ids))
else:
return [], 0
datasets = query.paginate(page=page, per_page=per_page, max_per_page=100, error_out=False)
return datasets.items, datasets.total
@staticmethod
def get_process_rules(dataset_id):
# get the latest process rule
dataset_process_rule = (
db.session.query(DatasetProcessRule)
.filter(DatasetProcessRule.dataset_id == dataset_id)
.order_by(DatasetProcessRule.created_at.desc())
.limit(1)
.one_or_none()
)
if dataset_process_rule:
mode = dataset_process_rule.mode
rules = dataset_process_rule.rules_dict
else:
mode = DocumentService.DEFAULT_RULES["mode"]
rules = DocumentService.DEFAULT_RULES["rules"]
return {"mode": mode, "rules": rules}
@staticmethod
def get_datasets_by_ids(ids, tenant_id):
datasets = Dataset.query.filter(Dataset.id.in_(ids), Dataset.tenant_id == tenant_id).paginate(
page=1, per_page=len(ids), max_per_page=len(ids), error_out=False
)
return datasets.items, datasets.total
@staticmethod
def create_empty_dataset(
tenant_id: str,
name: str,
description: Optional[str],
indexing_technique: Optional[str],
account: Account,
permission: Optional[str] = None,
provider: str = "vendor",
external_knowledge_api_id: Optional[str] = None,
external_knowledge_id: Optional[str] = None,
):
# check if dataset name already exists
if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
raise DatasetNameDuplicateError(f"Dataset with name {name} already exists.")
embedding_model = None
if indexing_technique == "high_quality":
model_manager = ModelManager()
embedding_model = model_manager.get_default_model_instance(
tenant_id=tenant_id, model_type=ModelType.TEXT_EMBEDDING
)
dataset = Dataset(name=name, indexing_technique=indexing_technique)
# dataset = Dataset(name=name, provider=provider, config=config)
dataset.description = description
dataset.created_by = account.id
dataset.updated_by = account.id
dataset.tenant_id = tenant_id
dataset.embedding_model_provider = embedding_model.provider if embedding_model else None
dataset.embedding_model = embedding_model.model if embedding_model else None
dataset.permission = permission or DatasetPermissionEnum.ONLY_ME
dataset.provider = provider
db.session.add(dataset)
db.session.flush()
if provider == "external" and external_knowledge_api_id:
external_knowledge_api = ExternalDatasetService.get_external_knowledge_api(external_knowledge_api_id)
if not external_knowledge_api:
raise ValueError("External API template not found.")
external_knowledge_binding = ExternalKnowledgeBindings(
tenant_id=tenant_id,
dataset_id=dataset.id,
external_knowledge_api_id=external_knowledge_api_id,
external_knowledge_id=external_knowledge_id,
created_by=account.id,
)
db.session.add(external_knowledge_binding)
db.session.commit()
return dataset
@staticmethod
def get_dataset(dataset_id) -> Optional[Dataset]:
dataset: Optional[Dataset] = Dataset.query.filter_by(id=dataset_id).first()
return dataset
@staticmethod
def check_dataset_model_setting(dataset):
if dataset.indexing_technique == "high_quality":
try:
model_manager = ModelManager()
model_manager.get_model_instance(
tenant_id=dataset.tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model,
)
except LLMBadRequestError:
raise ValueError(
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ValueError(f"The dataset in unavailable, due to: {ex.description}")
@staticmethod
def check_embedding_model_setting(tenant_id: str, embedding_model_provider: str, embedding_model: str):
try:
model_manager = ModelManager()
model_manager.get_model_instance(
tenant_id=tenant_id,
provider=embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=embedding_model,
)
except LLMBadRequestError:
raise ValueError(
"No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ValueError(f"The dataset in unavailable, due to: {ex.description}")
@staticmethod
def update_dataset(dataset_id, data, user):
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise ValueError("Dataset not found")
DatasetService.check_dataset_permission(dataset, user)
if dataset.provider == "external":
external_retrieval_model = data.get("external_retrieval_model", None)
if external_retrieval_model:
dataset.retrieval_model = external_retrieval_model
dataset.name = data.get("name", dataset.name)
dataset.description = data.get("description", "")
permission = data.get("permission")
if permission:
dataset.permission = permission
external_knowledge_id = data.get("external_knowledge_id", None)
db.session.add(dataset)
if not external_knowledge_id:
raise ValueError("External knowledge id is required.")
external_knowledge_api_id = data.get("external_knowledge_api_id", None)
if not external_knowledge_api_id:
raise ValueError("External knowledge api id is required.")
external_knowledge_binding = ExternalKnowledgeBindings.query.filter_by(dataset_id=dataset_id).first()
if (
external_knowledge_binding.external_knowledge_id != external_knowledge_id
or external_knowledge_binding.external_knowledge_api_id != external_knowledge_api_id
):
external_knowledge_binding.external_knowledge_id = external_knowledge_id
external_knowledge_binding.external_knowledge_api_id = external_knowledge_api_id
db.session.add(external_knowledge_binding)
db.session.commit()
else:
data.pop("partial_member_list", None)
data.pop("external_knowledge_api_id", None)
data.pop("external_knowledge_id", None)
data.pop("external_retrieval_model", None)
filtered_data = {k: v for k, v in data.items() if v is not None or k == "description"}
action = None
if dataset.indexing_technique != data["indexing_technique"]:
# if update indexing_technique
if data["indexing_technique"] == "economy":
action = "remove"
filtered_data["embedding_model"] = None
filtered_data["embedding_model_provider"] = None
filtered_data["collection_binding_id"] = None
elif data["indexing_technique"] == "high_quality":
action = "add"
# get embedding model setting
try:
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=current_user.current_tenant_id,
provider=data["embedding_model_provider"],
model_type=ModelType.TEXT_EMBEDDING,
model=data["embedding_model"],
)
filtered_data["embedding_model"] = embedding_model.model
filtered_data["embedding_model_provider"] = embedding_model.provider
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
embedding_model.provider, embedding_model.model
)
filtered_data["collection_binding_id"] = dataset_collection_binding.id
except LLMBadRequestError:
raise ValueError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ValueError(ex.description)
else:
if (
data["embedding_model_provider"] != dataset.embedding_model_provider
or data["embedding_model"] != dataset.embedding_model
):
action = "update"
try:
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=current_user.current_tenant_id,
provider=data["embedding_model_provider"],
model_type=ModelType.TEXT_EMBEDDING,
model=data["embedding_model"],
)
filtered_data["embedding_model"] = embedding_model.model
filtered_data["embedding_model_provider"] = embedding_model.provider
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
embedding_model.provider, embedding_model.model
)
filtered_data["collection_binding_id"] = dataset_collection_binding.id
except LLMBadRequestError:
raise ValueError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ValueError(ex.description)
filtered_data["updated_by"] = user.id
filtered_data["updated_at"] = datetime.datetime.now()
# update Retrieval model
filtered_data["retrieval_model"] = data["retrieval_model"]
dataset.query.filter_by(id=dataset_id).update(filtered_data)
db.session.commit()
if action:
deal_dataset_vector_index_task.delay(dataset_id, action)
return dataset
@staticmethod
def delete_dataset(dataset_id, user):
dataset = DatasetService.get_dataset(dataset_id)
if dataset is None:
return False
DatasetService.check_dataset_permission(dataset, user)
dataset_was_deleted.send(dataset)
db.session.delete(dataset)
db.session.commit()
return True
@staticmethod
def dataset_use_check(dataset_id) -> bool:
count = AppDatasetJoin.query.filter_by(dataset_id=dataset_id).count()
if count > 0:
return True
return False
@staticmethod
def check_dataset_permission(dataset, user):
if dataset.tenant_id != user.current_tenant_id:
logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")
raise NoPermissionError("You do not have permission to access this dataset.")
if user.current_role != TenantAccountRole.OWNER:
if dataset.permission == DatasetPermissionEnum.ONLY_ME and dataset.created_by != user.id:
logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")
raise NoPermissionError("You do not have permission to access this dataset.")
if dataset.permission == "partial_members":
user_permission = DatasetPermission.query.filter_by(dataset_id=dataset.id, account_id=user.id).first()
if (
not user_permission
and dataset.tenant_id != user.current_tenant_id
and dataset.created_by != user.id
):
logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")
raise NoPermissionError("You do not have permission to access this dataset.")
@staticmethod
def check_dataset_operator_permission(user: Optional[Account] = None, dataset: Optional[Dataset] = None):
if not dataset:
raise ValueError("Dataset not found")
if not user:
raise ValueError("User not found")
if user.current_role != TenantAccountRole.OWNER:
if dataset.permission == DatasetPermissionEnum.ONLY_ME:
if dataset.created_by != user.id:
raise NoPermissionError("You do not have permission to access this dataset.")
elif dataset.permission == DatasetPermissionEnum.PARTIAL_TEAM:
if not any(
dp.dataset_id == dataset.id for dp in DatasetPermission.query.filter_by(account_id=user.id).all()
):
raise NoPermissionError("You do not have permission to access this dataset.")
@staticmethod
def get_dataset_queries(dataset_id: str, page: int, per_page: int):
dataset_queries = (
DatasetQuery.query.filter_by(dataset_id=dataset_id)
.order_by(db.desc(DatasetQuery.created_at))
.paginate(page=page, per_page=per_page, max_per_page=100, error_out=False)
)
return dataset_queries.items, dataset_queries.total
@staticmethod
def get_related_apps(dataset_id: str):
return (
AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id)
.order_by(db.desc(AppDatasetJoin.created_at))
.all()
)
@staticmethod
def get_dataset_auto_disable_logs(dataset_id: str) -> dict:
features = FeatureService.get_features(current_user.current_tenant_id)
if not features.billing.enabled or features.billing.subscription.plan == "sandbox":
return {
"document_ids": [],
"count": 0,
}
# get recent 30 days auto disable logs
start_date = datetime.datetime.now() - datetime.timedelta(days=30)
dataset_auto_disable_logs = DatasetAutoDisableLog.query.filter(
DatasetAutoDisableLog.dataset_id == dataset_id,
DatasetAutoDisableLog.created_at >= start_date,
).all()
if dataset_auto_disable_logs:
return {
"document_ids": [log.document_id for log in dataset_auto_disable_logs],
"count": len(dataset_auto_disable_logs),
}
return {
"document_ids": [],
"count": 0,
}
class DocumentService:
DEFAULT_RULES: dict[str, Any] = {
"mode": "custom",
"rules": {
"pre_processing_rules": [
{"id": "remove_extra_spaces", "enabled": True},
{"id": "remove_urls_emails", "enabled": False},
],
"segmentation": {"delimiter": "\n", "max_tokens": 500, "chunk_overlap": 50},
},
"limits": {
"indexing_max_segmentation_tokens_length": dify_config.INDEXING_MAX_SEGMENTATION_TOKENS_LENGTH,
},
}
DOCUMENT_METADATA_SCHEMA: dict[str, Any] = {
"book": {
"title": str,
"language": str,
"author": str,
"publisher": str,
"publication_date": str,
"isbn": str,
"category": str,
},
"web_page": {
"title": str,
"url": str,
"language": str,
"publish_date": str,
"author/publisher": str,
"topic/keywords": str,
"description": str,
},
"paper": {
"title": str,
"language": str,
"author": str,
"publish_date": str,
"journal/conference_name": str,
"volume/issue/page_numbers": str,
"doi": str,
"topic/keywords": str,
"abstract": str,
},
"social_media_post": {
"platform": str,
"author/username": str,
"publish_date": str,
"post_url": str,
"topic/tags": str,
},
"wikipedia_entry": {
"title": str,
"language": str,
"web_page_url": str,
"last_edit_date": str,
"editor/contributor": str,
"summary/introduction": str,
},
"personal_document": {
"title": str,
"author": str,
"creation_date": str,
"last_modified_date": str,
"document_type": str,
"tags/category": str,
},
"business_document": {
"title": str,
"author": str,
"creation_date": str,
"last_modified_date": str,
"document_type": str,
"department/team": str,
},
"im_chat_log": {
"chat_platform": str,
"chat_participants/group_name": str,
"start_date": str,
"end_date": str,
"summary": str,
},
"synced_from_notion": {
"title": str,
"language": str,
"author/creator": str,
"creation_date": str,
"last_modified_date": str,
"notion_page_link": str,
"category/tags": str,
"description": str,
},
"synced_from_github": {
"repository_name": str,
"repository_description": str,
"repository_owner/organization": str,
"code_filename": str,
"code_file_path": str,
"programming_language": str,
"github_link": str,
"open_source_license": str,
"commit_date": str,
"commit_author": str,
},
"others": dict,
}
@staticmethod
def get_document(dataset_id: str, document_id: Optional[str] = None) -> Optional[Document]:
if document_id:
document = (
db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()
)
return document
else:
return None
@staticmethod
def get_document_by_id(document_id: str) -> Optional[Document]:
document = db.session.query(Document).filter(Document.id == document_id).first()
return document
@staticmethod
def get_document_by_dataset_id(dataset_id: str) -> list[Document]:
documents = db.session.query(Document).filter(Document.dataset_id == dataset_id, Document.enabled == True).all()
return documents
@staticmethod
def get_error_documents_by_dataset_id(dataset_id: str) -> list[Document]:
documents = (
db.session.query(Document)
.filter(Document.dataset_id == dataset_id, Document.indexing_status.in_(["error", "paused"]))
.all()
)
return documents
@staticmethod
def get_batch_documents(dataset_id: str, batch: str) -> list[Document]:
documents = (
db.session.query(Document)
.filter(
Document.batch == batch,
Document.dataset_id == dataset_id,
Document.tenant_id == current_user.current_tenant_id,
)
.all()
)
return documents
@staticmethod
def get_document_file_detail(file_id: str):
file_detail = db.session.query(UploadFile).filter(UploadFile.id == file_id).one_or_none()
return file_detail
@staticmethod
def check_archived(document):
if document.archived:
return True
else:
return False
@staticmethod
def delete_document(document):
# trigger document_was_deleted signal
file_id = None
if document.data_source_type == "upload_file":
if document.data_source_info:
data_source_info = document.data_source_info_dict
if data_source_info and "upload_file_id" in data_source_info:
file_id = data_source_info["upload_file_id"]
document_was_deleted.send(
document.id, dataset_id=document.dataset_id, doc_form=document.doc_form, file_id=file_id
)
db.session.delete(document)
db.session.commit()
@staticmethod
def delete_documents(dataset: Dataset, document_ids: list[str]):
documents = db.session.query(Document).filter(Document.id.in_(document_ids)).all()
file_ids = [
document.data_source_info_dict["upload_file_id"]
for document in documents
if document.data_source_type == "upload_file"
]
batch_clean_document_task.delay(document_ids, dataset.id, dataset.doc_form, file_ids)
for document in documents:
db.session.delete(document)
db.session.commit()
@staticmethod
def rename_document(dataset_id: str, document_id: str, name: str) -> Document:
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise ValueError("Dataset not found.")
document = DocumentService.get_document(dataset_id, document_id)
if not document:
raise ValueError("Document not found.")
if document.tenant_id != current_user.current_tenant_id:
raise ValueError("No permission.")
document.name = name
db.session.add(document)
db.session.commit()
return document
@staticmethod
def pause_document(document):
if document.indexing_status not in {"waiting", "parsing", "cleaning", "splitting", "indexing"}:
raise DocumentIndexingError()
# update document to be paused
document.is_paused = True
document.paused_by = current_user.id
document.paused_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
db.session.add(document)
db.session.commit()
# set document paused flag
indexing_cache_key = "document_{}_is_paused".format(document.id)
redis_client.setnx(indexing_cache_key, "True")
@staticmethod
def recover_document(document):
if not document.is_paused:
raise DocumentIndexingError()
# update document to be recover
document.is_paused = False
document.paused_by = None
document.paused_at = None
db.session.add(document)
db.session.commit()
# delete paused flag
indexing_cache_key = "document_{}_is_paused".format(document.id)
redis_client.delete(indexing_cache_key)
# trigger async task
recover_document_indexing_task.delay(document.dataset_id, document.id)
@staticmethod
def retry_document(dataset_id: str, documents: list[Document]):
for document in documents:
# add retry flag
retry_indexing_cache_key = "document_{}_is_retried".format(document.id)
cache_result = redis_client.get(retry_indexing_cache_key)
if cache_result is not None:
raise ValueError("Document is being retried, please try again later")
# retry document indexing
document.indexing_status = "waiting"
db.session.add(document)
db.session.commit()
redis_client.setex(retry_indexing_cache_key, 600, 1)
# trigger async task
document_ids = [document.id for document in documents]
retry_document_indexing_task.delay(dataset_id, document_ids)
@staticmethod
def sync_website_document(dataset_id: str, document: Document):
# add sync flag
sync_indexing_cache_key = "document_{}_is_sync".format(document.id)
cache_result = redis_client.get(sync_indexing_cache_key)
if cache_result is not None:
raise ValueError("Document is being synced, please try again later")
# sync document indexing
document.indexing_status = "waiting"
data_source_info = document.data_source_info_dict
data_source_info["mode"] = "scrape"
document.data_source_info = json.dumps(data_source_info, ensure_ascii=False)
db.session.add(document)
db.session.commit()
redis_client.setex(sync_indexing_cache_key, 600, 1)
sync_website_document_indexing_task.delay(dataset_id, document.id)
@staticmethod
def get_documents_position(dataset_id):
document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
if document:
return document.position + 1
else:
return 1
@staticmethod
def save_document_with_dataset_id(
dataset: Dataset,
knowledge_config: KnowledgeConfig,
account: Account | Any,
dataset_process_rule: Optional[DatasetProcessRule] = None,
created_from: str = "web",
):
# check document limit
features = FeatureService.get_features(current_user.current_tenant_id)
if features.billing.enabled:
if not knowledge_config.original_document_id:
count = 0
if knowledge_config.data_source:
if knowledge_config.data_source.info_list.data_source_type == "upload_file":
upload_file_list = knowledge_config.data_source.info_list.file_info_list.file_ids # type: ignore
count = len(upload_file_list)
elif knowledge_config.data_source.info_list.data_source_type == "notion_import":
notion_info_list = knowledge_config.data_source.info_list.notion_info_list
for notion_info in notion_info_list: # type: ignore
count = count + len(notion_info.pages)
elif knowledge_config.data_source.info_list.data_source_type == "website_crawl":
website_info = knowledge_config.data_source.info_list.website_info_list
count = len(website_info.urls) # type: ignore
batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
if count > batch_upload_limit:
raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
DocumentService.check_documents_upload_quota(count, features)
# if dataset is empty, update dataset data_source_type
if not dataset.data_source_type:
dataset.data_source_type = knowledge_config.data_source.info_list.data_source_type # type: ignore
if not dataset.indexing_technique:
if knowledge_config.indexing_technique not in Dataset.INDEXING_TECHNIQUE_LIST:
raise ValueError("Indexing technique is invalid")
dataset.indexing_technique = knowledge_config.indexing_technique
if knowledge_config.indexing_technique == "high_quality":
model_manager = ModelManager()
if knowledge_config.embedding_model and knowledge_config.embedding_model_provider:
dataset_embedding_model = knowledge_config.embedding_model
dataset_embedding_model_provider = knowledge_config.embedding_model_provider
else:
embedding_model = model_manager.get_default_model_instance(
tenant_id=current_user.current_tenant_id, model_type=ModelType.TEXT_EMBEDDING
)
dataset_embedding_model = embedding_model.model
dataset_embedding_model_provider = embedding_model.provider
dataset.embedding_model = dataset_embedding_model
dataset.embedding_model_provider = dataset_embedding_model_provider
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
dataset_embedding_model_provider, dataset_embedding_model
)
dataset.collection_binding_id = dataset_collection_binding.id
if not dataset.retrieval_model:
default_retrieval_model = {
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
"reranking_enable": False,
"reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},
"top_k": 2,
"score_threshold_enabled": False,
}
dataset.retrieval_model = (
knowledge_config.retrieval_model.model_dump()
if knowledge_config.retrieval_model
else default_retrieval_model
) # type: ignore
documents = []
if knowledge_config.original_document_id:
document = DocumentService.update_document_with_dataset_id(dataset, knowledge_config, account)
documents.append(document)
batch = document.batch
else:
batch = time.strftime("%Y%m%d%H%M%S") + str(random.randint(100000, 999999))
# save process rule
if not dataset_process_rule:
process_rule = knowledge_config.process_rule
if process_rule:
if process_rule.mode in ("custom", "hierarchical"):
dataset_process_rule = DatasetProcessRule(
dataset_id=dataset.id,
mode=process_rule.mode,
rules=process_rule.rules.model_dump_json() if process_rule.rules else None,
created_by=account.id,
)
elif process_rule.mode == "automatic":
dataset_process_rule = DatasetProcessRule(
dataset_id=dataset.id,
mode=process_rule.mode,
rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
created_by=account.id,
)
else:
logging.warn(
f"Invalid process rule mode: {process_rule.mode}, can not find dataset process rule"
)
return
db.session.add(dataset_process_rule)
db.session.commit()
lock_name = "add_document_lock_dataset_id_{}".format(dataset.id)
with redis_client.lock(lock_name, timeout=600):
position = DocumentService.get_documents_position(dataset.id)
document_ids = []
duplicate_document_ids = []
if knowledge_config.data_source.info_list.data_source_type == "upload_file": # type: ignore
upload_file_list = knowledge_config.data_source.info_list.file_info_list.file_ids # type: ignore
for file_id in upload_file_list:
file = (
db.session.query(UploadFile)
.filter(UploadFile.tenant_id == dataset.tenant_id, UploadFile.id == file_id)
.first()
)
# raise error if file not found
if not file:
raise FileNotExistsError()
file_name = file.name
data_source_info = {
"upload_file_id": file_id,
}
# check duplicate
if knowledge_config.duplicate:
document = Document.query.filter_by(
dataset_id=dataset.id,
tenant_id=current_user.current_tenant_id,
data_source_type="upload_file",
enabled=True,
name=file_name,
).first()
if document:
document.dataset_process_rule_id = dataset_process_rule.id # type: ignore
document.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
document.created_from = created_from
document.doc_form = knowledge_config.doc_form
document.doc_language = knowledge_config.doc_language
document.data_source_info = json.dumps(data_source_info)
document.batch = batch
document.indexing_status = "waiting"
if knowledge_config.metadata:
document.doc_type = knowledge_config.metadata.doc_type
document.metadata = knowledge_config.metadata.doc_metadata
db.session.add(document)
documents.append(document)
duplicate_document_ids.append(document.id)
continue
document = DocumentService.build_document(
dataset,
dataset_process_rule.id, # type: ignore
knowledge_config.data_source.info_list.data_source_type, # type: ignore
knowledge_config.doc_form,
knowledge_config.doc_language,
data_source_info,
created_from,
position,
account,
file_name,
batch,
knowledge_config.metadata,
)
db.session.add(document)
db.session.flush()
document_ids.append(document.id)
documents.append(document)
position += 1
elif knowledge_config.data_source.info_list.data_source_type == "notion_import": # type: ignore
notion_info_list = knowledge_config.data_source.info_list.notion_info_list # type: ignore
if not notion_info_list:
raise ValueError("No notion info list found.")
exist_page_ids = []
exist_document = {}
documents = Document.query.filter_by(
dataset_id=dataset.id,
tenant_id=current_user.current_tenant_id,
data_source_type="notion_import",
enabled=True,
).all()
if documents:
for document in documents:
data_source_info = json.loads(document.data_source_info)
exist_page_ids.append(data_source_info["notion_page_id"])
exist_document[data_source_info["notion_page_id"]] = document.id
for notion_info in notion_info_list:
workspace_id = notion_info.workspace_id
data_source_binding = DataSourceOauthBinding.query.filter(
db.and_(
DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
DataSourceOauthBinding.provider == "notion",
DataSourceOauthBinding.disabled == False,
DataSourceOauthBinding.source_info["workspace_id"] == f'"{workspace_id}"',
)
).first()
if not data_source_binding:
raise ValueError("Data source binding not found.")
for page in notion_info.pages:
if page.page_id not in exist_page_ids:
data_source_info = {
"notion_workspace_id": workspace_id,
"notion_page_id": page.page_id,
"notion_page_icon": page.page_icon.model_dump() if page.page_icon else None,
"type": page.type,
}
document = DocumentService.build_document(
dataset,
dataset_process_rule.id, # type: ignore
knowledge_config.data_source.info_list.data_source_type, # type: ignore
knowledge_config.doc_form,
knowledge_config.doc_language,
data_source_info,
created_from,
position,
account,
page.page_name,
batch,
knowledge_config.metadata,
)
db.session.add(document)
db.session.flush()
document_ids.append(document.id)
documents.append(document)
position += 1
else:
exist_document.pop(page.page_id)
# delete not selected documents
if len(exist_document) > 0:
clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
elif knowledge_config.data_source.info_list.data_source_type == "website_crawl": # type: ignore
website_info = knowledge_config.data_source.info_list.website_info_list # type: ignore
if not website_info:
raise ValueError("No website info list found.")
urls = website_info.urls
for url in urls:
data_source_info = {
"url": url,
"provider": website_info.provider,
"job_id": website_info.job_id,
"only_main_content": website_info.only_main_content,
"mode": "crawl",
}
if len(url) > 255:
document_name = url[:200] + "..."
else:
document_name = url
document = DocumentService.build_document(
dataset,
dataset_process_rule.id, # type: ignore
knowledge_config.data_source.info_list.data_source_type, # type: ignore
knowledge_config.doc_form,
knowledge_config.doc_language,
data_source_info,
created_from,
position,
account,
document_name,
batch,
knowledge_config.metadata,
)
db.session.add(document)
db.session.flush()
document_ids.append(document.id)
documents.append(document)
position += 1
db.session.commit()
# trigger async task
if document_ids:
document_indexing_task.delay(dataset.id, document_ids)
if duplicate_document_ids:
duplicate_document_indexing_task.delay(dataset.id, duplicate_document_ids)
return documents, batch
@staticmethod
def check_documents_upload_quota(count: int, features: FeatureModel):
can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size
if count > can_upload_size:
raise ValueError(
f"You have reached the limit of your subscription. Only {can_upload_size} documents can be uploaded."
)
@staticmethod
def build_document(
dataset: Dataset,
process_rule_id: str,
data_source_type: str,
document_form: str,
document_language: str,
data_source_info: dict,
created_from: str,
position: int,
account: Account,
name: str,
batch: str,
metadata: Optional[MetaDataConfig] = None,
):
document = Document(
tenant_id=dataset.tenant_id,
dataset_id=dataset.id,
position=position,
data_source_type=data_source_type,
data_source_info=json.dumps(data_source_info),
dataset_process_rule_id=process_rule_id,
batch=batch,
name=name,
created_from=created_from,
created_by=account.id,
doc_form=document_form,
doc_language=document_language,
)
if metadata is not None:
document.doc_metadata = metadata.doc_metadata
document.doc_type = metadata.doc_type
return document
@staticmethod
def get_tenant_documents_count():
documents_count = Document.query.filter(
Document.completed_at.isnot(None),
Document.enabled == True,
Document.archived == False,
Document.tenant_id == current_user.current_tenant_id,
).count()
return documents_count
@staticmethod
def update_document_with_dataset_id(
dataset: Dataset,
document_data: KnowledgeConfig,
account: Account,
dataset_process_rule: Optional[DatasetProcessRule] = None,
created_from: str = "web",
):
DatasetService.check_dataset_model_setting(dataset)
document = DocumentService.get_document(dataset.id, document_data.original_document_id)
if document is None:
raise NotFound("Document not found")
if document.display_status != "available":
raise ValueError("Document is not available")
# save process rule
if document_data.process_rule:
process_rule = document_data.process_rule
if process_rule.mode in {"custom", "hierarchical"}:
dataset_process_rule = DatasetProcessRule(
dataset_id=dataset.id,
mode=process_rule.mode,
rules=process_rule.rules.model_dump_json() if process_rule.rules else None,
created_by=account.id,
)
elif process_rule.mode == "automatic":
dataset_process_rule = DatasetProcessRule(
dataset_id=dataset.id,
mode=process_rule.mode,
rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
created_by=account.id,
)
if dataset_process_rule is not None:
db.session.add(dataset_process_rule)
db.session.commit()
document.dataset_process_rule_id = dataset_process_rule.id
# update document data source
if document_data.data_source:
file_name = ""
data_source_info = {}
if document_data.data_source.info_list.data_source_type == "upload_file":
if not document_data.data_source.info_list.file_info_list:
raise ValueError("No file info list found.")
upload_file_list = document_data.data_source.info_list.file_info_list.file_ids
for file_id in upload_file_list:
file = (
db.session.query(UploadFile)
.filter(UploadFile.tenant_id == dataset.tenant_id, UploadFile.id == file_id)
.first()
)
# raise error if file not found
if not file:
raise FileNotExistsError()
file_name = file.name
data_source_info = {
"upload_file_id": file_id,
}
elif document_data.data_source.info_list.data_source_type == "notion_import":
if not document_data.data_source.info_list.notion_info_list:
raise ValueError("No notion info list found.")
notion_info_list = document_data.data_source.info_list.notion_info_list
for notion_info in notion_info_list:
workspace_id = notion_info.workspace_id
data_source_binding = DataSourceOauthBinding.query.filter(
db.and_(
DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
DataSourceOauthBinding.provider == "notion",
DataSourceOauthBinding.disabled == False,
DataSourceOauthBinding.source_info["workspace_id"] == f'"{workspace_id}"',
)
).first()
if not data_source_binding:
raise ValueError("Data source binding not found.")
for page in notion_info.pages:
data_source_info = {
"notion_workspace_id": workspace_id,
"notion_page_id": page.page_id,
"notion_page_icon": page.page_icon.model_dump() if page.page_icon else None, # type: ignore
"type": page.type,
}
elif document_data.data_source.info_list.data_source_type == "website_crawl":
website_info = document_data.data_source.info_list.website_info_list
if website_info:
urls = website_info.urls
for url in urls:
data_source_info = {
"url": url,
"provider": website_info.provider,
"job_id": website_info.job_id,
"only_main_content": website_info.only_main_content, # type: ignore
"mode": "crawl",
}
document.data_source_type = document_data.data_source.info_list.data_source_type
document.data_source_info = json.dumps(data_source_info)
document.name = file_name
# update document name
if document_data.name:
document.name = document_data.name
# update doc_type and doc_metadata if provided
if document_data.metadata is not None:
document.doc_metadata = document_data.metadata.doc_type
document.doc_type = document_data.metadata.doc_type
# update document to be waiting
document.indexing_status = "waiting"
document.completed_at = None
document.processing_started_at = None
document.parsing_completed_at = None
document.cleaning_completed_at = None
document.splitting_completed_at = None
document.updated_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
document.created_from = created_from
document.doc_form = document_data.doc_form
db.session.add(document)
db.session.commit()
# update document segment
update_params = {DocumentSegment.status: "re_segment"}
DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
db.session.commit()
# trigger async task
document_indexing_update_task.delay(document.dataset_id, document.id)
return document
@staticmethod
def save_document_without_dataset_id(tenant_id: str, knowledge_config: KnowledgeConfig, account: Account):
features = FeatureService.get_features(current_user.current_tenant_id)
if features.billing.enabled:
count = 0
if knowledge_config.data_source.info_list.data_source_type == "upload_file": # type: ignore
upload_file_list = (
knowledge_config.data_source.info_list.file_info_list.file_ids # type: ignore
if knowledge_config.data_source.info_list.file_info_list # type: ignore
else []
)
count = len(upload_file_list)
elif knowledge_config.data_source.info_list.data_source_type == "notion_import": # type: ignore
notion_info_list = knowledge_config.data_source.info_list.notion_info_list # type: ignore
if notion_info_list:
for notion_info in notion_info_list:
count = count + len(notion_info.pages)
elif knowledge_config.data_source.info_list.data_source_type == "website_crawl": # type: ignore
website_info = knowledge_config.data_source.info_list.website_info_list # type: ignore
if website_info:
count = len(website_info.urls)
batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
if count > batch_upload_limit:
raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
DocumentService.check_documents_upload_quota(count, features)
dataset_collection_binding_id = None
retrieval_model = None
if knowledge_config.indexing_technique == "high_quality":
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
knowledge_config.embedding_model_provider, # type: ignore
knowledge_config.embedding_model, # type: ignore
)
dataset_collection_binding_id = dataset_collection_binding.id
if knowledge_config.retrieval_model:
retrieval_model = knowledge_config.retrieval_model
else:
retrieval_model = RetrievalModel(
search_method=RetrievalMethod.SEMANTIC_SEARCH.value,
reranking_enable=False,
reranking_model=RerankingModel(reranking_provider_name="", reranking_model_name=""),
top_k=2,
score_threshold_enabled=False,
)
# save dataset
dataset = Dataset(
tenant_id=tenant_id,
name="",
data_source_type=knowledge_config.data_source.info_list.data_source_type, # type: ignore
indexing_technique=knowledge_config.indexing_technique,
created_by=account.id,
embedding_model=knowledge_config.embedding_model,
embedding_model_provider=knowledge_config.embedding_model_provider,
collection_binding_id=dataset_collection_binding_id,
retrieval_model=retrieval_model.model_dump() if retrieval_model else None,
)
db.session.add(dataset) # type: ignore
db.session.flush()
documents, batch = DocumentService.save_document_with_dataset_id(dataset, knowledge_config, account)
cut_length = 18
cut_name = documents[0].name[:cut_length]
dataset.name = cut_name + "..."
dataset.description = "useful for when you want to answer queries about the " + documents[0].name
db.session.commit()
return dataset, documents, batch
@classmethod
def document_create_args_validate(cls, knowledge_config: KnowledgeConfig):
if not knowledge_config.data_source and not knowledge_config.process_rule:
raise ValueError("Data source or Process rule is required")
else:
if knowledge_config.data_source:
DocumentService.data_source_args_validate(knowledge_config)
if knowledge_config.process_rule:
DocumentService.process_rule_args_validate(knowledge_config)
@classmethod
def data_source_args_validate(cls, knowledge_config: KnowledgeConfig):
if not knowledge_config.data_source:
raise ValueError("Data source is required")
if knowledge_config.data_source.info_list.data_source_type not in Document.DATA_SOURCES:
raise ValueError("Data source type is invalid")
if not knowledge_config.data_source.info_list:
raise ValueError("Data source info is required")
if knowledge_config.data_source.info_list.data_source_type == "upload_file":
if not knowledge_config.data_source.info_list.file_info_list:
raise ValueError("File source info is required")
if knowledge_config.data_source.info_list.data_source_type == "notion_import":
if not knowledge_config.data_source.info_list.notion_info_list:
raise ValueError("Notion source info is required")
if knowledge_config.data_source.info_list.data_source_type == "website_crawl":
if not knowledge_config.data_source.info_list.website_info_list:
raise ValueError("Website source info is required")
@classmethod
def process_rule_args_validate(cls, knowledge_config: KnowledgeConfig):
if not knowledge_config.process_rule:
raise ValueError("Process rule is required")
if not knowledge_config.process_rule.mode:
raise ValueError("Process rule mode is required")
if knowledge_config.process_rule.mode not in DatasetProcessRule.MODES:
raise ValueError("Process rule mode is invalid")
if knowledge_config.process_rule.mode == "automatic":
knowledge_config.process_rule.rules = None
else:
if not knowledge_config.process_rule.rules:
raise ValueError("Process rule rules is required")
if knowledge_config.process_rule.rules.pre_processing_rules is None:
raise ValueError("Process rule pre_processing_rules is required")
unique_pre_processing_rule_dicts = {}
for pre_processing_rule in knowledge_config.process_rule.rules.pre_processing_rules:
if not pre_processing_rule.id:
raise ValueError("Process rule pre_processing_rules id is required")
if not isinstance(pre_processing_rule.enabled, bool):
raise ValueError("Process rule pre_processing_rules enabled is invalid")
unique_pre_processing_rule_dicts[pre_processing_rule.id] = pre_processing_rule
knowledge_config.process_rule.rules.pre_processing_rules = list(unique_pre_processing_rule_dicts.values())
if not knowledge_config.process_rule.rules.segmentation:
raise ValueError("Process rule segmentation is required")
if not knowledge_config.process_rule.rules.segmentation.separator:
raise ValueError("Process rule segmentation separator is required")
if not isinstance(knowledge_config.process_rule.rules.segmentation.separator, str):
raise ValueError("Process rule segmentation separator is invalid")
if not (
knowledge_config.process_rule.mode == "hierarchical"
and knowledge_config.process_rule.rules.parent_mode == "full-doc"
):
if not knowledge_config.process_rule.rules.segmentation.max_tokens:
raise ValueError("Process rule segmentation max_tokens is required")
if not isinstance(knowledge_config.process_rule.rules.segmentation.max_tokens, int):
raise ValueError("Process rule segmentation max_tokens is invalid")
@classmethod
def estimate_args_validate(cls, args: dict):
if "info_list" not in args or not args["info_list"]:
raise ValueError("Data source info is required")
if not isinstance(args["info_list"], dict):
raise ValueError("Data info is invalid")
if "process_rule" not in args or not args["process_rule"]:
raise ValueError("Process rule is required")
if not isinstance(args["process_rule"], dict):
raise ValueError("Process rule is invalid")
if "mode" not in args["process_rule"] or not args["process_rule"]["mode"]:
raise ValueError("Process rule mode is required")
if args["process_rule"]["mode"] not in DatasetProcessRule.MODES:
raise ValueError("Process rule mode is invalid")
if args["process_rule"]["mode"] == "automatic":
args["process_rule"]["rules"] = {}
else:
if "rules" not in args["process_rule"] or not args["process_rule"]["rules"]:
raise ValueError("Process rule rules is required")
if not isinstance(args["process_rule"]["rules"], dict):
raise ValueError("Process rule rules is invalid")
if (
"pre_processing_rules" not in args["process_rule"]["rules"]
or args["process_rule"]["rules"]["pre_processing_rules"] is None
):
raise ValueError("Process rule pre_processing_rules is required")
if not isinstance(args["process_rule"]["rules"]["pre_processing_rules"], list):
raise ValueError("Process rule pre_processing_rules is invalid")
unique_pre_processing_rule_dicts = {}
for pre_processing_rule in args["process_rule"]["rules"]["pre_processing_rules"]:
if "id" not in pre_processing_rule or not pre_processing_rule["id"]:
raise ValueError("Process rule pre_processing_rules id is required")
if pre_processing_rule["id"] not in DatasetProcessRule.PRE_PROCESSING_RULES:
raise ValueError("Process rule pre_processing_rules id is invalid")
if "enabled" not in pre_processing_rule or pre_processing_rule["enabled"] is None:
raise ValueError("Process rule pre_processing_rules enabled is required")
if not isinstance(pre_processing_rule["enabled"], bool):
raise ValueError("Process rule pre_processing_rules enabled is invalid")
unique_pre_processing_rule_dicts[pre_processing_rule["id"]] = pre_processing_rule
args["process_rule"]["rules"]["pre_processing_rules"] = list(unique_pre_processing_rule_dicts.values())
if (
"segmentation" not in args["process_rule"]["rules"]
or args["process_rule"]["rules"]["segmentation"] is None
):
raise ValueError("Process rule segmentation is required")
if not isinstance(args["process_rule"]["rules"]["segmentation"], dict):
raise ValueError("Process rule segmentation is invalid")
if (
"separator" not in args["process_rule"]["rules"]["segmentation"]
or not args["process_rule"]["rules"]["segmentation"]["separator"]
):
raise ValueError("Process rule segmentation separator is required")
if not isinstance(args["process_rule"]["rules"]["segmentation"]["separator"], str):
raise ValueError("Process rule segmentation separator is invalid")
if (
"max_tokens" not in args["process_rule"]["rules"]["segmentation"]
or not args["process_rule"]["rules"]["segmentation"]["max_tokens"]
):
raise ValueError("Process rule segmentation max_tokens is required")
if not isinstance(args["process_rule"]["rules"]["segmentation"]["max_tokens"], int):
raise ValueError("Process rule segmentation max_tokens is invalid")
class SegmentService:
@classmethod
def segment_create_args_validate(cls, args: dict, document: Document):
if document.doc_form == "qa_model":
if "answer" not in args or not args["answer"]:
raise ValueError("Answer is required")
if not args["answer"].strip():
raise ValueError("Answer is empty")
if "content" not in args or not args["content"] or not args["content"].strip():
raise ValueError("Content is empty")
@classmethod
def create_segment(cls, args: dict, document: Document, dataset: Dataset):
content = args["content"]
doc_id = str(uuid.uuid4())
segment_hash = helper.generate_text_hash(content)
tokens = 0
if dataset.indexing_technique == "high_quality":
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=current_user.current_tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model,
)
# calc embedding use tokens
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])
lock_name = "add_segment_lock_document_id_{}".format(document.id)
with redis_client.lock(lock_name, timeout=600):
max_position = (
db.session.query(func.max(DocumentSegment.position))
.filter(DocumentSegment.document_id == document.id)
.scalar()
)
segment_document = DocumentSegment(
tenant_id=current_user.current_tenant_id,
dataset_id=document.dataset_id,
document_id=document.id,
index_node_id=doc_id,
index_node_hash=segment_hash,
position=max_position + 1 if max_position else 1,
content=content,
word_count=len(content),
tokens=tokens,
status="completed",
indexing_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
completed_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
created_by=current_user.id,
)
if document.doc_form == "qa_model":
segment_document.word_count += len(args["answer"])
segment_document.answer = args["answer"]
db.session.add(segment_document)
# update document word count
document.word_count += segment_document.word_count
db.session.add(document)
db.session.commit()
# save vector index
try:
VectorService.create_segments_vector([args["keywords"]], [segment_document], dataset, document.doc_form)
except Exception as e:
logging.exception("create segment index failed")
segment_document.enabled = False
segment_document.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
segment_document.status = "error"
segment_document.error = str(e)
db.session.commit()
segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
return segment
@classmethod
def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
lock_name = "multi_add_segment_lock_document_id_{}".format(document.id)
increment_word_count = 0
with redis_client.lock(lock_name, timeout=600):
embedding_model = None
if dataset.indexing_technique == "high_quality":
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=current_user.current_tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model,
)
max_position = (
db.session.query(func.max(DocumentSegment.position))
.filter(DocumentSegment.document_id == document.id)
.scalar()
)
pre_segment_data_list = []
segment_data_list = []
keywords_list = []
position = max_position + 1 if max_position else 1
for segment_item in segments:
content = segment_item["content"]
doc_id = str(uuid.uuid4())
segment_hash = helper.generate_text_hash(content)
tokens = 0
if dataset.indexing_technique == "high_quality" and embedding_model:
# calc embedding use tokens
if document.doc_form == "qa_model":
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content + segment_item["answer"]])
else:
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])
segment_document = DocumentSegment(
tenant_id=current_user.current_tenant_id,
dataset_id=document.dataset_id,
document_id=document.id,
index_node_id=doc_id,
index_node_hash=segment_hash,
position=position,
content=content,
word_count=len(content),
tokens=tokens,
status="completed",
indexing_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
completed_at=datetime.datetime.now(datetime.UTC).replace(tzinfo=None),
created_by=current_user.id,
)
if document.doc_form == "qa_model":
segment_document.answer = segment_item["answer"]
segment_document.word_count += len(segment_item["answer"])
increment_word_count += segment_document.word_count
db.session.add(segment_document)
segment_data_list.append(segment_document)
position += 1
pre_segment_data_list.append(segment_document)
if "keywords" in segment_item:
keywords_list.append(segment_item["keywords"])
else:
keywords_list.append(None)
# update document word count
document.word_count += increment_word_count
db.session.add(document)
try:
# save vector index
VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset, document.doc_form)
except Exception as e:
logging.exception("create segment index failed")
for segment_document in segment_data_list:
segment_document.enabled = False
segment_document.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
segment_document.status = "error"
segment_document.error = str(e)
db.session.commit()
return segment_data_list
@classmethod
def update_segment(cls, args: SegmentUpdateArgs, segment: DocumentSegment, document: Document, dataset: Dataset):
indexing_cache_key = "segment_{}_indexing".format(segment.id)
cache_result = redis_client.get(indexing_cache_key)
if cache_result is not None:
raise ValueError("Segment is indexing, please try again later")
if args.enabled is not None:
action = args.enabled
if segment.enabled != action:
if not action:
segment.enabled = action
segment.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
segment.disabled_by = current_user.id
db.session.add(segment)
db.session.commit()
# Set cache to prevent indexing the same segment multiple times
redis_client.setex(indexing_cache_key, 600, 1)
disable_segment_from_index_task.delay(segment.id)
return segment
if not segment.enabled:
if args.enabled is not None:
if not args.enabled:
raise ValueError("Can't update disabled segment")
else:
raise ValueError("Can't update disabled segment")
try:
word_count_change = segment.word_count
content = args.content or segment.content
if segment.content == content:
segment.word_count = len(content)
if document.doc_form == "qa_model":
segment.answer = args.answer
segment.word_count += len(args.answer) if args.answer else 0
word_count_change = segment.word_count - word_count_change
keyword_changed = False
if args.keywords:
if Counter(segment.keywords) != Counter(args.keywords):
segment.keywords = args.keywords
keyword_changed = True
segment.enabled = True
segment.disabled_at = None
segment.disabled_by = None
db.session.add(segment)
db.session.commit()
# update document word count
if word_count_change != 0:
document.word_count = max(0, document.word_count + word_count_change)
db.session.add(document)
# update segment index task
if document.doc_form == IndexType.PARENT_CHILD_INDEX and args.regenerate_child_chunks:
# regenerate child chunks
# get embedding model instance
if dataset.indexing_technique == "high_quality":
# check embedding model setting
model_manager = ModelManager()
if dataset.embedding_model_provider:
embedding_model_instance = model_manager.get_model_instance(
tenant_id=dataset.tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model,
)
else:
embedding_model_instance = model_manager.get_default_model_instance(
tenant_id=dataset.tenant_id,
model_type=ModelType.TEXT_EMBEDDING,
)
else:
raise ValueError("The knowledge base index technique is not high quality!")
# get the process rule
processing_rule = (
db.session.query(DatasetProcessRule)
.filter(DatasetProcessRule.id == document.dataset_process_rule_id)
.first()
)
if not processing_rule:
raise ValueError("No processing rule found.")
VectorService.generate_child_chunks(
segment, document, dataset, embedding_model_instance, processing_rule, True
)
elif document.doc_form in (IndexType.PARAGRAPH_INDEX, IndexType.QA_INDEX):
if args.enabled or keyword_changed:
VectorService.create_segments_vector(
[args.keywords] if args.keywords else None,
[segment],
dataset,
document.doc_form,
)
else:
segment_hash = helper.generate_text_hash(content)
tokens = 0
if dataset.indexing_technique == "high_quality":
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=current_user.current_tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model,
)
# calc embedding use tokens
if document.doc_form == "qa_model":
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content + segment.answer])
else:
tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])
segment.content = content
segment.index_node_hash = segment_hash
segment.word_count = len(content)
segment.tokens = tokens
segment.status = "completed"
segment.indexing_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
segment.completed_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
segment.updated_by = current_user.id
segment.updated_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
segment.enabled = True
segment.disabled_at = None
segment.disabled_by = None
if document.doc_form == "qa_model":
segment.answer = args.answer
segment.word_count += len(args.answer) if args.answer else 0
word_count_change = segment.word_count - word_count_change
# update document word count
if word_count_change != 0:
document.word_count = max(0, document.word_count + word_count_change)
db.session.add(document)
db.session.add(segment)
db.session.commit()
if document.doc_form == IndexType.PARENT_CHILD_INDEX and args.regenerate_child_chunks:
# get embedding model instance
if dataset.indexing_technique == "high_quality":
# check embedding model setting
model_manager = ModelManager()
if dataset.embedding_model_provider:
embedding_model_instance = model_manager.get_model_instance(
tenant_id=dataset.tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model,
)
else:
embedding_model_instance = model_manager.get_default_model_instance(
tenant_id=dataset.tenant_id,
model_type=ModelType.TEXT_EMBEDDING,
)
else:
raise ValueError("The knowledge base index technique is not high quality!")
# get the process rule
processing_rule = (
db.session.query(DatasetProcessRule)
.filter(DatasetProcessRule.id == document.dataset_process_rule_id)
.first()
)
if not processing_rule:
raise ValueError("No processing rule found.")
VectorService.generate_child_chunks(
segment, document, dataset, embedding_model_instance, processing_rule, True
)
elif document.doc_form in (IndexType.PARAGRAPH_INDEX, IndexType.QA_INDEX):
# update segment vector index
VectorService.update_segment_vector(args.keywords, segment, dataset)
except Exception as e:
logging.exception("update segment index failed")
segment.enabled = False
segment.disabled_at = datetime.datetime.now(datetime.UTC).replace(tzinfo=None)
segment.status = "error"
segment.error = str(e)
db.session.commit()
new_segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()
return new_segment
@classmethod
def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):
indexing_cache_key = "segment_{}_delete_indexing".format(segment.id)
cache_result = redis_client.get(indexing_cache_key)
if cache_result is not None:
raise ValueError("Segment is deleting.")
# enabled segment need to delete index
if segment.enabled:
# send delete segment index task
redis_client.setex(indexing_cache_key, 600, 1)
delete_segment_from_index_task.delay([segment.index_node_id], dataset.id, document.id)
db.session.delete(segment)
# update document word count
document.word_count -= segment.word_count
db.session.add(document)
db.session.commit()
@classmethod
def delete_segments(cls, segment_ids: list, document: Document, dataset: Dataset):
index_node_ids = (
DocumentSegment.query.with_entities(DocumentSegment.index_node_id)
.filter(
DocumentSegment.id.in_(segment_ids),
DocumentSegment.dataset_id == dataset.id,
DocumentSegment.document_id == document.id,
DocumentSegment.tenant_id == current_user.current_tenant_id,
)
.all()
)
index_node_ids = [index_node_id[0] for index_node_id in index_node_ids]
delete_segment_from_index_task.delay(index_node_ids, dataset.id, document.id)
db.session.query(DocumentSegment).filter(DocumentSegment.id.in_(segment_ids)).delete()
db.session.commit()
@classmethod
def update_segments_status(cls, segment_ids: list, action: str, dataset: Dataset, document: Document):
if action == "enable":
segments = (
db.session.query(DocumentSegment)
.filter(
DocumentSegment.id.in_(segment_ids),
DocumentSegment.dataset_id == dataset.id,
DocumentSegment.document_id == document.id,
DocumentSegment.enabled == False,
)
.all()
)
if not segments:
return
real_deal_segmment_ids = []
for segment in segments:
indexing_cache_key = "segment_{}_indexing".format(segment.id)
cache_result = redis_client.get(indexing_cache_key)
if cache_result is not None:
continue
segment.enabled = True
segment.disabled_at = None
segment.disabled_by = None
db.session.add(segment)
real_deal_segmment_ids.append(segment.id)
db.session.commit()
enable_segments_to_index_task.delay(real_deal_segmment_ids, dataset.id, document.id)
elif action == "disable":
segments = (
db.session.query(DocumentSegment)
.filter(
DocumentSegment.id.in_(segment_ids),
DocumentSegment.dataset_id == dataset.id,
DocumentSegment.document_id == document.id,
DocumentSegment.enabled == True,
)
.all()
)
if not segments:
return
real_deal_segmment_ids = []
for segment in segments:
indexing_cache_key = "segment_{}_indexing".format(segment.id)
cache_result = redis_client.get(indexing_cache_key)
if cache_result is not None:
continue
segment.enabled = False
segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
segment.disabled_by = current_user.id
db.session.add(segment)
real_deal_segmment_ids.append(segment.id)
db.session.commit()
disable_segments_from_index_task.delay(real_deal_segmment_ids, dataset.id, document.id)
else:
raise InvalidActionError()
@classmethod
def create_child_chunk(
cls, content: str, segment: DocumentSegment, document: Document, dataset: Dataset
) -> ChildChunk:
lock_name = "add_child_lock_{}".format(segment.id)
with redis_client.lock(lock_name, timeout=20):
index_node_id = str(uuid.uuid4())
index_node_hash = helper.generate_text_hash(content)
child_chunk_count = (
db.session.query(ChildChunk)
.filter(
ChildChunk.tenant_id == current_user.current_tenant_id,
ChildChunk.dataset_id == dataset.id,
ChildChunk.document_id == document.id,
ChildChunk.segment_id == segment.id,
)
.count()
)
max_position = (
db.session.query(func.max(ChildChunk.position))
.filter(
ChildChunk.tenant_id == current_user.current_tenant_id,
ChildChunk.dataset_id == dataset.id,
ChildChunk.document_id == document.id,
ChildChunk.segment_id == segment.id,
)
.scalar()
)
child_chunk = ChildChunk(
tenant_id=current_user.current_tenant_id,
dataset_id=dataset.id,
document_id=document.id,
segment_id=segment.id,
position=max_position + 1,
index_node_id=index_node_id,
index_node_hash=index_node_hash,
content=content,
word_count=len(content),
type="customized",
created_by=current_user.id,
)
db.session.add(child_chunk)
# save vector index
try:
VectorService.create_child_chunk_vector(child_chunk, dataset)
except Exception as e:
logging.exception("create child chunk index failed")
db.session.rollback()
raise ChildChunkIndexingError(str(e))
db.session.commit()
return child_chunk
@classmethod
def update_child_chunks(
cls,
child_chunks_update_args: list[ChildChunkUpdateArgs],
segment: DocumentSegment,
document: Document,
dataset: Dataset,
) -> list[ChildChunk]:
child_chunks = (
db.session.query(ChildChunk)
.filter(
ChildChunk.dataset_id == dataset.id,
ChildChunk.document_id == document.id,
ChildChunk.segment_id == segment.id,
)
.all()
)
child_chunks_map = {chunk.id: chunk for chunk in child_chunks}
new_child_chunks, update_child_chunks, delete_child_chunks, new_child_chunks_args = [], [], [], []
for child_chunk_update_args in child_chunks_update_args:
if child_chunk_update_args.id:
child_chunk = child_chunks_map.pop(child_chunk_update_args.id, None)
if child_chunk:
if child_chunk.content != child_chunk_update_args.content:
child_chunk.content = child_chunk_update_args.content
child_chunk.word_count = len(child_chunk.content)
child_chunk.updated_by = current_user.id
child_chunk.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
child_chunk.type = "customized"
update_child_chunks.append(child_chunk)
else:
new_child_chunks_args.append(child_chunk_update_args)
if child_chunks_map:
delete_child_chunks = list(child_chunks_map.values())
try:
if update_child_chunks:
db.session.bulk_save_objects(update_child_chunks)
if delete_child_chunks:
for child_chunk in delete_child_chunks:
db.session.delete(child_chunk)
if new_child_chunks_args:
child_chunk_count = len(child_chunks)
for position, args in enumerate(new_child_chunks_args, start=child_chunk_count + 1):
index_node_id = str(uuid.uuid4())
index_node_hash = helper.generate_text_hash(args.content)
child_chunk = ChildChunk(
tenant_id=current_user.current_tenant_id,
dataset_id=dataset.id,
document_id=document.id,
segment_id=segment.id,
position=position,
index_node_id=index_node_id,
index_node_hash=index_node_hash,
content=args.content,
word_count=len(args.content),
type="customized",
created_by=current_user.id,
)
db.session.add(child_chunk)
db.session.flush()
new_child_chunks.append(child_chunk)
VectorService.update_child_chunk_vector(new_child_chunks, update_child_chunks, delete_child_chunks, dataset)
db.session.commit()
except Exception as e:
logging.exception("update child chunk index failed")
db.session.rollback()
raise ChildChunkIndexingError(str(e))
return sorted(new_child_chunks + update_child_chunks, key=lambda x: x.position)
@classmethod
def update_child_chunk(
cls,
content: str,
child_chunk: ChildChunk,
segment: DocumentSegment,
document: Document,
dataset: Dataset,
) -> ChildChunk:
try:
child_chunk.content = content
child_chunk.word_count = len(content)
child_chunk.updated_by = current_user.id
child_chunk.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
child_chunk.type = "customized"
db.session.add(child_chunk)
VectorService.update_child_chunk_vector([], [child_chunk], [], dataset)
db.session.commit()
except Exception as e:
logging.exception("update child chunk index failed")
db.session.rollback()
raise ChildChunkIndexingError(str(e))
return child_chunk
@classmethod
def delete_child_chunk(cls, child_chunk: ChildChunk, dataset: Dataset):
db.session.delete(child_chunk)
try:
VectorService.delete_child_chunk_vector(child_chunk, dataset)
except Exception as e:
logging.exception("delete child chunk index failed")
db.session.rollback()
raise ChildChunkDeleteIndexError(str(e))
db.session.commit()
@classmethod
def get_child_chunks(
cls, segment_id: str, document_id: str, dataset_id: str, page: int, limit: int, keyword: Optional[str] = None
):
query = ChildChunk.query.filter_by(
tenant_id=current_user.current_tenant_id,
dataset_id=dataset_id,
document_id=document_id,
segment_id=segment_id,
).order_by(ChildChunk.position.asc())
if keyword:
query = query.where(ChildChunk.content.ilike(f"%{keyword}%"))
return query.paginate(page=page, per_page=limit, max_per_page=100, error_out=False)
class DatasetCollectionBindingService:
@classmethod
def get_dataset_collection_binding(
cls, provider_name: str, model_name: str, collection_type: str = "dataset"
) -> DatasetCollectionBinding:
dataset_collection_binding = (
db.session.query(DatasetCollectionBinding)
.filter(
DatasetCollectionBinding.provider_name == provider_name,
DatasetCollectionBinding.model_name == model_name,
DatasetCollectionBinding.type == collection_type,
)
.order_by(DatasetCollectionBinding.created_at)
.first()
)
if not dataset_collection_binding:
dataset_collection_binding = DatasetCollectionBinding(
provider_name=provider_name,
model_name=model_name,
collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())),
type=collection_type,
)
db.session.add(dataset_collection_binding)
db.session.commit()
return dataset_collection_binding
@classmethod
def get_dataset_collection_binding_by_id_and_type(
cls, collection_binding_id: str, collection_type: str = "dataset"
) -> DatasetCollectionBinding:
dataset_collection_binding = (
db.session.query(DatasetCollectionBinding)
.filter(
DatasetCollectionBinding.id == collection_binding_id, DatasetCollectionBinding.type == collection_type
)
.order_by(DatasetCollectionBinding.created_at)
.first()
)
if not dataset_collection_binding:
raise ValueError("Dataset collection binding not found")
return dataset_collection_binding
class DatasetPermissionService:
@classmethod
def get_dataset_partial_member_list(cls, dataset_id):
user_list_query = (
db.session.query(
DatasetPermission.account_id,
)
.filter(DatasetPermission.dataset_id == dataset_id)
.all()
)
user_list = []
for user in user_list_query:
user_list.append(user.account_id)
return user_list
@classmethod
def update_partial_member_list(cls, tenant_id, dataset_id, user_list):
try:
db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()
permissions = []
for user in user_list:
permission = DatasetPermission(
tenant_id=tenant_id,
dataset_id=dataset_id,
account_id=user["user_id"],
)
permissions.append(permission)
db.session.add_all(permissions)
db.session.commit()
except Exception as e:
db.session.rollback()
raise e
@classmethod
def check_permission(cls, user, dataset, requested_permission, requested_partial_member_list):
if not user.is_dataset_editor:
raise NoPermissionError("User does not have permission to edit this dataset.")
if user.is_dataset_operator and dataset.permission != requested_permission:
raise NoPermissionError("Dataset operators cannot change the dataset permissions.")
if user.is_dataset_operator and requested_permission == "partial_members":
if not requested_partial_member_list:
raise ValueError("Partial member list is required when setting to partial members.")
local_member_list = cls.get_dataset_partial_member_list(dataset.id)
request_member_list = [user["user_id"] for user in requested_partial_member_list]
if set(local_member_list) != set(request_member_list):
raise ValueError("Dataset operators cannot change the dataset permissions.")
@classmethod
def clear_partial_member_list(cls, dataset_id):
try:
db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()
db.session.commit()
except Exception as e:
db.session.rollback()
raise e