CatPtain's picture
Upload 697 files
20f348c verified
raw
history blame
9.22 kB
import json
import os
import time
import uuid
from collections.abc import Generator
from unittest.mock import MagicMock
import pytest
from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCredentialsEntity
from core.entities.provider_configuration import ProviderConfiguration, ProviderModelBundle
from core.entities.provider_entities import CustomConfiguration, CustomProviderConfiguration, SystemConfiguration
from core.model_manager import ModelInstance
from core.model_runtime.entities.model_entities import ModelType
from core.model_runtime.model_providers import ModelProviderFactory
from core.workflow.entities.variable_pool import VariablePool
from core.workflow.enums import SystemVariableKey
from core.workflow.graph_engine.entities.graph import Graph
from core.workflow.graph_engine.entities.graph_init_params import GraphInitParams
from core.workflow.graph_engine.entities.graph_runtime_state import GraphRuntimeState
from core.workflow.nodes.event import RunCompletedEvent
from core.workflow.nodes.llm.node import LLMNode
from extensions.ext_database import db
from models.enums import UserFrom
from models.provider import ProviderType
from models.workflow import WorkflowNodeExecutionStatus, WorkflowType
"""FOR MOCK FIXTURES, DO NOT REMOVE"""
from tests.integration_tests.model_runtime.__mock.openai import setup_openai_mock
from tests.integration_tests.workflow.nodes.__mock.code_executor import setup_code_executor_mock
def init_llm_node(config: dict) -> LLMNode:
graph_config = {
"edges": [
{
"id": "start-source-next-target",
"source": "start",
"target": "llm",
},
],
"nodes": [{"data": {"type": "start"}, "id": "start"}, config],
}
graph = Graph.init(graph_config=graph_config)
init_params = GraphInitParams(
tenant_id="1",
app_id="1",
workflow_type=WorkflowType.WORKFLOW,
workflow_id="1",
graph_config=graph_config,
user_id="1",
user_from=UserFrom.ACCOUNT,
invoke_from=InvokeFrom.DEBUGGER,
call_depth=0,
)
# construct variable pool
variable_pool = VariablePool(
system_variables={
SystemVariableKey.QUERY: "what's the weather today?",
SystemVariableKey.FILES: [],
SystemVariableKey.CONVERSATION_ID: "abababa",
SystemVariableKey.USER_ID: "aaa",
},
user_inputs={},
environment_variables=[],
conversation_variables=[],
)
variable_pool.add(["abc", "output"], "sunny")
node = LLMNode(
id=str(uuid.uuid4()),
graph_init_params=init_params,
graph=graph,
graph_runtime_state=GraphRuntimeState(variable_pool=variable_pool, start_at=time.perf_counter()),
config=config,
)
return node
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
def test_execute_llm(setup_openai_mock):
node = init_llm_node(
config={
"id": "llm",
"data": {
"title": "123",
"type": "llm",
"model": {"provider": "openai", "name": "gpt-3.5-turbo", "mode": "chat", "completion_params": {}},
"prompt_template": [
{"role": "system", "text": "you are a helpful assistant.\ntoday's weather is {{#abc.output#}}."},
{"role": "user", "text": "{{#sys.query#}}"},
],
"memory": None,
"context": {"enabled": False},
"vision": {"enabled": False},
},
},
)
credentials = {"openai_api_key": os.environ.get("OPENAI_API_KEY")}
provider_instance = ModelProviderFactory().get_provider_instance("openai")
model_type_instance = provider_instance.get_model_instance(ModelType.LLM)
provider_model_bundle = ProviderModelBundle(
configuration=ProviderConfiguration(
tenant_id="1",
provider=provider_instance.get_provider_schema(),
preferred_provider_type=ProviderType.CUSTOM,
using_provider_type=ProviderType.CUSTOM,
system_configuration=SystemConfiguration(enabled=False),
custom_configuration=CustomConfiguration(provider=CustomProviderConfiguration(credentials=credentials)),
model_settings=[],
),
provider_instance=provider_instance,
model_type_instance=model_type_instance,
)
model_instance = ModelInstance(provider_model_bundle=provider_model_bundle, model="gpt-3.5-turbo")
model_schema = model_type_instance.get_model_schema("gpt-3.5-turbo")
assert model_schema is not None
model_config = ModelConfigWithCredentialsEntity(
model="gpt-3.5-turbo",
provider="openai",
mode="chat",
credentials=credentials,
parameters={},
model_schema=model_schema,
provider_model_bundle=provider_model_bundle,
)
# Mock db.session.close()
db.session.close = MagicMock()
node._fetch_model_config = MagicMock(return_value=(model_instance, model_config))
# execute node
result = node._run()
assert isinstance(result, Generator)
for item in result:
if isinstance(item, RunCompletedEvent):
assert item.run_result.status == WorkflowNodeExecutionStatus.SUCCEEDED
assert item.run_result.process_data is not None
assert item.run_result.outputs is not None
assert item.run_result.outputs.get("text") is not None
assert item.run_result.outputs.get("usage", {})["total_tokens"] > 0
@pytest.mark.parametrize("setup_code_executor_mock", [["none"]], indirect=True)
@pytest.mark.parametrize("setup_openai_mock", [["chat"]], indirect=True)
def test_execute_llm_with_jinja2(setup_code_executor_mock, setup_openai_mock):
"""
Test execute LLM node with jinja2
"""
node = init_llm_node(
config={
"id": "llm",
"data": {
"title": "123",
"type": "llm",
"model": {"provider": "openai", "name": "gpt-3.5-turbo", "mode": "chat", "completion_params": {}},
"prompt_config": {
"jinja2_variables": [
{"variable": "sys_query", "value_selector": ["sys", "query"]},
{"variable": "output", "value_selector": ["abc", "output"]},
]
},
"prompt_template": [
{
"role": "system",
"text": "you are a helpful assistant.\ntoday's weather is {{#abc.output#}}",
"jinja2_text": "you are a helpful assistant.\ntoday's weather is {{output}}.",
"edition_type": "jinja2",
},
{
"role": "user",
"text": "{{#sys.query#}}",
"jinja2_text": "{{sys_query}}",
"edition_type": "basic",
},
],
"memory": None,
"context": {"enabled": False},
"vision": {"enabled": False},
},
},
)
credentials = {"openai_api_key": os.environ.get("OPENAI_API_KEY")}
provider_instance = ModelProviderFactory().get_provider_instance("openai")
model_type_instance = provider_instance.get_model_instance(ModelType.LLM)
provider_model_bundle = ProviderModelBundle(
configuration=ProviderConfiguration(
tenant_id="1",
provider=provider_instance.get_provider_schema(),
preferred_provider_type=ProviderType.CUSTOM,
using_provider_type=ProviderType.CUSTOM,
system_configuration=SystemConfiguration(enabled=False),
custom_configuration=CustomConfiguration(provider=CustomProviderConfiguration(credentials=credentials)),
model_settings=[],
),
provider_instance=provider_instance,
model_type_instance=model_type_instance,
)
model_instance = ModelInstance(provider_model_bundle=provider_model_bundle, model="gpt-3.5-turbo")
model_schema = model_type_instance.get_model_schema("gpt-3.5-turbo")
assert model_schema is not None
model_config = ModelConfigWithCredentialsEntity(
model="gpt-3.5-turbo",
provider="openai",
mode="chat",
credentials=credentials,
parameters={},
model_schema=model_schema,
provider_model_bundle=provider_model_bundle,
)
# Mock db.session.close()
db.session.close = MagicMock()
node._fetch_model_config = MagicMock(return_value=(model_instance, model_config))
# execute node
result = node._run()
for item in result:
if isinstance(item, RunCompletedEvent):
assert item.run_result.status == WorkflowNodeExecutionStatus.SUCCEEDED
assert item.run_result.process_data is not None
assert "sunny" in json.dumps(item.run_result.process_data)
assert "what's the weather today?" in json.dumps(item.run_result.process_data)