Catmeow's picture
Update app.py
33e1b1c
raw
history blame
4.44 kB
import os
os.system("pip install dlib")
import sys
import face_detection
from PIL import Image, ImageOps, ImageFile
import numpy as np
import cv2 as cv
import torch
import gradio as gr
torch.set_grad_enabled(False)
device = "cuda" if torch.cuda.is_available() else "cpu"
model = torch.hub.load("bryandlee/animegan2-pytorch:main", "generator", device=device).eval()
model2 = torch.hub.load("AK391/animegan2-pytorch:main", "generator", pretrained="face_paint_512_v1", device=device).eval()
face2paint = torch.hub.load("bryandlee/animegan2-pytorch:main", "face2paint", device=device)
image_format = "png" #@param ["jpeg", "png"]
def unsharp_mask(image, kernel_size=(5, 5), sigma=1.0, amount=2.0, threshold=0):
"""Return a sharpened version of the image, using an unsharp mask."""
blurred = cv.GaussianBlur(image, kernel_size, sigma)
sharpened = float(amount + 1) * image - float(amount) * blurred
sharpened = np.maximum(sharpened, np.zeros(sharpened.shape))
sharpened = np.minimum(sharpened, 255 * np.ones(sharpened.shape))
sharpened = sharpened.round().astype(np.uint8)
if threshold > 0:
low_contrast_mask = np.absolute(image - blurred) < threshold
np.copyto(sharpened, image, where=low_contrast_mask)
return sharpened
def normPRED(d):
ma = np.max(d)
mi = np.min(d)
dn = (d-mi)/(ma-mi)
return dn
def array_to_np(array_in):
array_in = normPRED(array_in)
array_in = np.squeeze(255.0*(array_in))
array_in = np.transpose(array_in, (1, 2, 0))
return array_in
def array_to_image(array_in):
array_in = normPRED(array_in)
array_in = np.squeeze(255.0*(array_in))
array_in = np.transpose(array_in, (1, 2, 0))
im = Image.fromarray(array_in.astype(np.uint8))
return im
def image_as_array(image_in):
image_in = np.array(image_in, np.float32)
tmpImg = np.zeros((image_in.shape[0],image_in.shape[1],3))
image_in = image_in/np.max(image_in)
if image_in.shape[2]==1:
tmpImg[:,:,0] = (image_in[:,:,0]-0.485)/0.229
tmpImg[:,:,1] = (image_in[:,:,0]-0.485)/0.229
tmpImg[:,:,2] = (image_in[:,:,0]-0.485)/0.229
else:
tmpImg[:,:,0] = (image_in[:,:,0]-0.485)/0.229
tmpImg[:,:,1] = (image_in[:,:,1]-0.456)/0.224
tmpImg[:,:,2] = (image_in[:,:,2]-0.406)/0.225
tmpImg = tmpImg.transpose((2, 0, 1))
image_out = np.expand_dims(tmpImg, 0)
return image_out
# detect a face
def find_aligned_face(image_in, size=400):
aligned_image, n_faces, quad = face_detection.align(image_in, face_index=0, output_size=size)
return aligned_image, n_faces, quad
# clip the face, return array
def align_first_face(image_in, size=400):
aligned_image, n_faces, quad = find_aligned_face(image_in,size=size)
if n_faces == 0:
try:
image_in = ImageOps.exif_transpose(image_in)
except:
print("exif problem, not rotating")
image_in = image_in.resize((size, size))
im_array = image_as_array(image_in)
else:
im_array = image_as_array(aligned_image)
return im_array
def img_concat_h(im1, im2):
dst = Image.new('RGB', (im1.width + im2.width, im1.height))
dst.paste(im1, (0, 0))
dst.paste(im2, (im1.width, 0))
return dst
def paintface(img: Image.Image,size: int) -> Image.Image:
aligned_img = align_first_face(img,size)
if aligned_img is None:
output=None
else:
im_in = array_to_image(aligned_img).convert("RGB")
im_out1 = face2paint(model, im_in, side_by_side=False)
im_out2 = face2paint(model2, im_in, side_by_side=False)
output = img_concat_h(im_out1, im_out2)
return output
def generate(img):
out = paintface(img, 400)
return out
title = "Face from Photo into paint"
description = "Upload a photo, this Ai will detect and transfer only the face into cartoon/anime painting style. If cannot detect face, try edit button on the right side. Good for Avatar size. Output will be two results from different models"
article = "Examples are from Internet"
Example=[['Example01.jpg'],['Example02.jpg'],['Example03.jpg']]
demo = gr.Interface(
generate,
inputs = [gr.Image(type="pil", label="Upload a photo")],
outputs= [gr.Image(type="pil", label="Output")],
title=title,
description=description,
article=article,
examples=Example,
allow_flagging='never'
)
demo.launch()