Spaces:
Runtime error
Runtime error
import os | |
os.system("pip install dlib") | |
import sys | |
import face_detection | |
from PIL import Image, ImageOps, ImageFile | |
import numpy as np | |
import cv2 as cv | |
import torch | |
import gradio as gr | |
torch.set_grad_enabled(False) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model = torch.hub.load("bryandlee/animegan2-pytorch:main", "generator", device=device).eval() | |
model2 = torch.hub.load("AK391/animegan2-pytorch:main", "generator", pretrained="face_paint_512_v1", device=device).eval() | |
face2paint = torch.hub.load("bryandlee/animegan2-pytorch:main", "face2paint", device=device) | |
image_format = "png" #@param ["jpeg", "png"] | |
def unsharp_mask(image, kernel_size=(5, 5), sigma=1.0, amount=2.0, threshold=0): | |
"""Return a sharpened version of the image, using an unsharp mask.""" | |
blurred = cv.GaussianBlur(image, kernel_size, sigma) | |
sharpened = float(amount + 1) * image - float(amount) * blurred | |
sharpened = np.maximum(sharpened, np.zeros(sharpened.shape)) | |
sharpened = np.minimum(sharpened, 255 * np.ones(sharpened.shape)) | |
sharpened = sharpened.round().astype(np.uint8) | |
if threshold > 0: | |
low_contrast_mask = np.absolute(image - blurred) < threshold | |
np.copyto(sharpened, image, where=low_contrast_mask) | |
return sharpened | |
def normPRED(d): | |
ma = np.max(d) | |
mi = np.min(d) | |
dn = (d-mi)/(ma-mi) | |
return dn | |
def array_to_np(array_in): | |
array_in = normPRED(array_in) | |
array_in = np.squeeze(255.0*(array_in)) | |
array_in = np.transpose(array_in, (1, 2, 0)) | |
return array_in | |
def array_to_image(array_in): | |
array_in = normPRED(array_in) | |
array_in = np.squeeze(255.0*(array_in)) | |
array_in = np.transpose(array_in, (1, 2, 0)) | |
im = Image.fromarray(array_in.astype(np.uint8)) | |
return im | |
def image_as_array(image_in): | |
image_in = np.array(image_in, np.float32) | |
tmpImg = np.zeros((image_in.shape[0],image_in.shape[1],3)) | |
image_in = image_in/np.max(image_in) | |
if image_in.shape[2]==1: | |
tmpImg[:,:,0] = (image_in[:,:,0]-0.485)/0.229 | |
tmpImg[:,:,1] = (image_in[:,:,0]-0.485)/0.229 | |
tmpImg[:,:,2] = (image_in[:,:,0]-0.485)/0.229 | |
else: | |
tmpImg[:,:,0] = (image_in[:,:,0]-0.485)/0.229 | |
tmpImg[:,:,1] = (image_in[:,:,1]-0.456)/0.224 | |
tmpImg[:,:,2] = (image_in[:,:,2]-0.406)/0.225 | |
tmpImg = tmpImg.transpose((2, 0, 1)) | |
image_out = np.expand_dims(tmpImg, 0) | |
return image_out | |
# detect a face | |
def find_aligned_face(image_in, size=400): | |
aligned_image, n_faces, quad = face_detection.align(image_in, face_index=0, output_size=size) | |
return aligned_image, n_faces, quad | |
# clip the face, return array | |
def align_first_face(image_in, size=400): | |
aligned_image, n_faces, quad = find_aligned_face(image_in,size=size) | |
if n_faces == 0: | |
try: | |
image_in = ImageOps.exif_transpose(image_in) | |
except: | |
print("exif problem, not rotating") | |
image_in = image_in.resize((size, size)) | |
im_array = image_as_array(image_in) | |
else: | |
im_array = image_as_array(aligned_image) | |
return im_array | |
def img_concat_h(im1, im2): | |
dst = Image.new('RGB', (im1.width + im2.width, im1.height)) | |
dst.paste(im1, (0, 0)) | |
dst.paste(im2, (im1.width, 0)) | |
return dst | |
def paintface(img: Image.Image,size: int) -> Image.Image: | |
aligned_img = align_first_face(img,size) | |
if aligned_img is None: | |
output=None | |
else: | |
im_in = array_to_image(aligned_img).convert("RGB") | |
im_out1 = face2paint(model, im_in, side_by_side=False) | |
im_out2 = face2paint(model2, im_in, side_by_side=False) | |
output = img_concat_h(im_out1, im_out2) | |
return output | |
def generate(img): | |
out = paintface(img, 400) | |
return out | |
title = "Face from Photo into paint" | |
description = "Upload a photo, this Ai will detect and transfer only the face into cartoon/anime painting style. If cannot detect face, try edit button on the right side. Good for Avatar size. Output will be two results from different models" | |
article = "Examples are from Internet" | |
Example=[['Example01.jpg'],['Example02.jpg'],['Example03.jpg']] | |
demo = gr.Interface( | |
generate, | |
inputs = [gr.Image(type="pil", label="Upload a photo")], | |
outputs= [gr.Image(type="pil", label="Output")], | |
title=title, | |
description=description, | |
article=article, | |
examples=Example, | |
allow_flagging='never' | |
) | |
demo.launch() | |