from doctest import Example import os os.system("pip install dlib") import sys import face_detection import PIL from PIL import Image, ImageOps, ImageFile import numpy as np import cv2 as cv import torch import gradio as gr torch.set_grad_enabled(False) device = "cuda" if torch.cuda.is_available() else "cpu" model = torch.hub.load("bryandlee/animegan2-pytorch:main", "generator", device=device).eval() model2 = torch.hub.load("AK391/animegan2-pytorch:main", "generator", pretrained="face_paint_512_v1", device=device).eval() face2paint = torch.hub.load("bryandlee/animegan2-pytorch:main", "face2paint", device=device) image_format = "png" #@param ["jpeg", "png"] def unsharp_mask(image, kernel_size=(5, 5), sigma=1.0, amount=2.0, threshold=0): """Return a sharpened version of the image, using an unsharp mask.""" blurred = cv.GaussianBlur(image, kernel_size, sigma) sharpened = float(amount + 1) * image - float(amount) * blurred sharpened = np.maximum(sharpened, np.zeros(sharpened.shape)) sharpened = np.minimum(sharpened, 255 * np.ones(sharpened.shape)) sharpened = sharpened.round().astype(np.uint8) if threshold > 0: low_contrast_mask = np.absolute(image - blurred) < threshold np.copyto(sharpened, image, where=low_contrast_mask) return sharpened def normPRED(d): ma = np.max(d) mi = np.min(d) dn = (d-mi)/(ma-mi) return dn def array_to_np(array_in): array_in = normPRED(array_in) array_in = np.squeeze(255.0*(array_in)) array_in = np.transpose(array_in, (1, 2, 0)) return array_in def array_to_image(array_in): array_in = normPRED(array_in) array_in = np.squeeze(255.0*(array_in)) array_in = np.transpose(array_in, (1, 2, 0)) im = Image.fromarray(array_in.astype(np.uint8)) return im def image_as_array(image_in): image_in = np.array(image_in, np.float32) tmpImg = np.zeros((image_in.shape[0],image_in.shape[1],3)) image_in = image_in/np.max(image_in) if image_in.shape[2]==1: tmpImg[:,:,0] = (image_in[:,:,0]-0.485)/0.229 tmpImg[:,:,1] = (image_in[:,:,0]-0.485)/0.229 tmpImg[:,:,2] = (image_in[:,:,0]-0.485)/0.229 else: tmpImg[:,:,0] = (image_in[:,:,0]-0.485)/0.229 tmpImg[:,:,1] = (image_in[:,:,1]-0.456)/0.224 tmpImg[:,:,2] = (image_in[:,:,2]-0.406)/0.225 tmpImg = tmpImg.transpose((2, 0, 1)) image_out = np.expand_dims(tmpImg, 0) return image_out # detect a face def find_aligned_face(image_in, size=400): aligned_image, n_faces, quad = face_detection.align(image_in, face_index=0, output_size=size) return aligned_image, n_faces, quad # clip the face, return array def align_first_face(image_in, size=400): aligned_image, n_faces, quad = find_aligned_face(image_in,size=size) if n_faces == 0: try: image_in = ImageOps.exif_transpose(image_in) except: print("exif problem, not rotating") image_in = image_in.resize((size, size)) im_array = image_as_array(image_in) else: im_array = image_as_array(aligned_image) return im_array def img_concat_h(im1, im2): dst = Image.new('RGB', (im1.width + im2.width, im1.height)) dst.paste(im1, (0, 0)) dst.paste(im2, (im1.width, 0)) return dst def paintface(img: Image.Image,size: int) -> Image.Image: aligned_img = align_first_face(img,size) if aligned_img is None: output=None else: im_in = array_to_image(aligned_img).convert("RGB") im_out1 = face2paint(model, im_in, side_by_side=False) im_out2 = face2paint(model2, im_in, side_by_side=False) output = img_concat_h(im_out1, im_out2) return output def generate(img): out = paintface(img, 400) return out title = "Face from Photo into paint" description = "Upload a photo, this Ai will detect and transfer only the face into cartoon/anime painting style. Good for Avatar painting style." article = "None" Example=[['Example01.jpg'],['Example02.jpg']] demo = gr.Interface( generate, inputs = [gr.Image(type="pil", label="Upload a photo, Ai will detect main face and paint into cartoon style")], outputs= [gr.Image(type="pil", label="Output two results from different models")], title=title, description=description, article=article, examples=Example, enable_queue=True, allow_flagging=False ) demo.launch()