Update app.py
Browse files
app.py
CHANGED
@@ -8,7 +8,7 @@ import re
|
|
8 |
|
9 |
# Step 1: Unzip models only once
|
10 |
unzip_dir = "unzipped_models"
|
11 |
-
zip_file = "Models.zip" #
|
12 |
|
13 |
if not os.path.exists(unzip_dir):
|
14 |
print("Extracting model zip file...")
|
@@ -18,7 +18,7 @@ if not os.path.exists(unzip_dir):
|
|
18 |
|
19 |
# Step 2: Parse folders to dynamically populate dropdowns
|
20 |
|
21 |
-
model_root = os.path.join(unzip_dir, 'Models') # Adjust
|
22 |
|
23 |
activations = []
|
24 |
seeds_dict = dict()
|
@@ -43,24 +43,16 @@ for act in os.listdir(model_root):
|
|
43 |
|
44 |
activations = sorted(activations)
|
45 |
|
46 |
-
|
47 |
-
# Step 3: Load linear models
|
48 |
-
# linear_rgb_path = os.path.join(unzip_dir, "linear_models/linear_rgb.joblib")
|
49 |
-
# linear_grey_path = os.path.join(unzip_dir, "linear_models/linear_grey.joblib")
|
50 |
-
|
51 |
-
# linear_rgb = joblib.load(linear_rgb_path)
|
52 |
-
# linear_grey = joblib.load(linear_grey_path)
|
53 |
-
|
54 |
-
# Step 4: Prediction function
|
55 |
def predict(r, g, b, activation, seed, neurons):
|
56 |
try:
|
57 |
X = np.array([[r, g, b]])
|
58 |
|
59 |
-
# Linear
|
60 |
lin_pred_rgb = (1.9221 * r) - (1.3817 * g) + (1.4058 * b) - 0.1318
|
61 |
|
62 |
# ANN prediction
|
63 |
-
keras_path = os.path.join(
|
64 |
if not os.path.exists(keras_path):
|
65 |
raise FileNotFoundError(f"Model not found: {keras_path}")
|
66 |
|
@@ -70,16 +62,15 @@ def predict(r, g, b, activation, seed, neurons):
|
|
70 |
return ann_pred, lin_pred_rgb
|
71 |
|
72 |
except Exception as e:
|
73 |
-
return f"Error: {str(e)}", ""
|
74 |
-
|
75 |
-
# Dynamic components for UI
|
76 |
|
|
|
77 |
def update_seeds(activation):
|
78 |
-
return
|
79 |
|
80 |
def update_neurons(activation, seed):
|
81 |
neurons = neurons_dict[(activation, seed)]
|
82 |
-
return
|
83 |
|
84 |
# Gradio Interface
|
85 |
with gr.Blocks() as demo:
|
@@ -92,9 +83,9 @@ with gr.Blocks() as demo:
|
|
92 |
b = gr.Number(label="B")
|
93 |
|
94 |
with gr.Row():
|
95 |
-
activation = gr.Dropdown(choices=activations, label="Activation Function")
|
96 |
-
seed = gr.Dropdown(label="Seed")
|
97 |
-
neurons = gr.Dropdown(label="Neurons")
|
98 |
|
99 |
activation.change(update_seeds, inputs=[activation], outputs=[seed])
|
100 |
seed.change(update_neurons, inputs=[activation, seed], outputs=[neurons])
|
@@ -105,7 +96,6 @@ with gr.Blocks() as demo:
|
|
105 |
with gr.Row():
|
106 |
ann_output = gr.Text(label="ANN Model Prediction")
|
107 |
lin_rgb_output = gr.Text(label="Linear RGB Prediction")
|
108 |
-
# lin_grey_output = gr.Text(label="Linear Grey Prediction")
|
109 |
|
110 |
btn.click(
|
111 |
fn=predict,
|
|
|
8 |
|
9 |
# Step 1: Unzip models only once
|
10 |
unzip_dir = "unzipped_models"
|
11 |
+
zip_file = "Models.zip" # Ensure this matches exactly the file name uploaded in your Space repo
|
12 |
|
13 |
if not os.path.exists(unzip_dir):
|
14 |
print("Extracting model zip file...")
|
|
|
18 |
|
19 |
# Step 2: Parse folders to dynamically populate dropdowns
|
20 |
|
21 |
+
model_root = os.path.join(unzip_dir, 'Models') # Adjust if ZIP structure is different
|
22 |
|
23 |
activations = []
|
24 |
seeds_dict = dict()
|
|
|
43 |
|
44 |
activations = sorted(activations)
|
45 |
|
46 |
+
# Step 3: Prediction function
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
def predict(r, g, b, activation, seed, neurons):
|
48 |
try:
|
49 |
X = np.array([[r, g, b]])
|
50 |
|
51 |
+
# Linear prediction (you can replace this with your actual linear model)
|
52 |
lin_pred_rgb = (1.9221 * r) - (1.3817 * g) + (1.4058 * b) - 0.1318
|
53 |
|
54 |
# ANN prediction
|
55 |
+
keras_path = os.path.join(model_root, activation, seed, f"model_{neurons}.keras")
|
56 |
if not os.path.exists(keras_path):
|
57 |
raise FileNotFoundError(f"Model not found: {keras_path}")
|
58 |
|
|
|
62 |
return ann_pred, lin_pred_rgb
|
63 |
|
64 |
except Exception as e:
|
65 |
+
return f"Error: {str(e)}", ""
|
|
|
|
|
66 |
|
67 |
+
# Step 4: Dynamic UI update functions (Gradio 4.x compliant)
|
68 |
def update_seeds(activation):
|
69 |
+
return gr.update(choices=seeds_dict[activation], value=seeds_dict[activation][0])
|
70 |
|
71 |
def update_neurons(activation, seed):
|
72 |
neurons = neurons_dict[(activation, seed)]
|
73 |
+
return gr.update(choices=neurons, value=neurons[0])
|
74 |
|
75 |
# Gradio Interface
|
76 |
with gr.Blocks() as demo:
|
|
|
83 |
b = gr.Number(label="B")
|
84 |
|
85 |
with gr.Row():
|
86 |
+
activation = gr.Dropdown(choices=activations, label="Activation Function", interactive=True)
|
87 |
+
seed = gr.Dropdown(label="Seed", interactive=True)
|
88 |
+
neurons = gr.Dropdown(label="Neurons", interactive=True)
|
89 |
|
90 |
activation.change(update_seeds, inputs=[activation], outputs=[seed])
|
91 |
seed.change(update_neurons, inputs=[activation, seed], outputs=[neurons])
|
|
|
96 |
with gr.Row():
|
97 |
ann_output = gr.Text(label="ANN Model Prediction")
|
98 |
lin_rgb_output = gr.Text(label="Linear RGB Prediction")
|
|
|
99 |
|
100 |
btn.click(
|
101 |
fn=predict,
|