Update app.py
Browse files
app.py
CHANGED
@@ -64,7 +64,11 @@ def predict(r, g, b, activation, seed, neurons):
|
|
64 |
model = tf.keras.models.load_model(keras_path)
|
65 |
ann_pred = model.predict(X)[0][0]
|
66 |
|
67 |
-
# Rescale cholestrol concentration prediction in mM
|
|
|
|
|
|
|
|
|
68 |
return ann_pred*50, lin_pred_rgb*50
|
69 |
|
70 |
except Exception as e:
|
@@ -80,7 +84,7 @@ def update_neurons(activation, seed):
|
|
80 |
|
81 |
# Gradio Interface
|
82 |
with gr.Blocks() as demo:
|
83 |
-
gr.Markdown("# Cholestrol Concentration Prediction - ANN and Linear Model")
|
84 |
gr.Markdown("# **Cholestrol Concentration Prediction - ANN and Linear Model**")
|
85 |
gr.Markdown("Dynamically select models and predict cholesterol concentration.")
|
86 |
|
@@ -124,6 +128,8 @@ Professor, Centre for Nanoscience and Technology, Pondicherry University, Puduch
|
|
124 |
ann_output = gr.Text(label="Cholestrol Conentration (mM) - ANN Model Prediction ")
|
125 |
lin_rgb_output = gr.Text(label="Cholestrol Conentration (mM) - Linear Model Prediction")
|
126 |
|
|
|
|
|
127 |
btn.click(
|
128 |
fn=predict,
|
129 |
inputs=[r, g, b, activation, seed, neurons],
|
|
|
64 |
model = tf.keras.models.load_model(keras_path)
|
65 |
ann_pred = model.predict(X)[0][0]
|
66 |
|
67 |
+
# Rescale cholestrol concentration prediction in mM and adjust to zero if negative
|
68 |
+
if ann_pred < 0:
|
69 |
+
ann_pred = 0;
|
70 |
+
if lin_pred_rgb < 0:
|
71 |
+
lin_pred_rgb = 0;
|
72 |
return ann_pred*50, lin_pred_rgb*50
|
73 |
|
74 |
except Exception as e:
|
|
|
84 |
|
85 |
# Gradio Interface
|
86 |
with gr.Blocks() as demo:
|
87 |
+
# gr.Markdown("# Cholestrol Concentration Prediction - ANN and Linear Model")
|
88 |
gr.Markdown("# **Cholestrol Concentration Prediction - ANN and Linear Model**")
|
89 |
gr.Markdown("Dynamically select models and predict cholesterol concentration.")
|
90 |
|
|
|
128 |
ann_output = gr.Text(label="Cholestrol Conentration (mM) - ANN Model Prediction ")
|
129 |
lin_rgb_output = gr.Text(label="Cholestrol Conentration (mM) - Linear Model Prediction")
|
130 |
|
131 |
+
gr.Markdown("* Predicted negative concentration adjusted to zero.")
|
132 |
+
|
133 |
btn.click(
|
134 |
fn=predict,
|
135 |
inputs=[r, g, b, activation, seed, neurons],
|