Spaces:
Runtime error
Runtime error
import gradio as gr | |
# processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224') | |
# model = ViTForImageClassification.from_pretrained('google/vit-base-patch16-224') | |
from transformers import pipeline | |
import base64 | |
import os | |
with open("Iso_Logotipo_Ceibal.png", "rb") as image_file: | |
encoded_image = base64.b64encode(image_file.read()).decode() | |
classifier = pipeline(model="google/vit-base-patch16-224") | |
# classifier("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png") | |
def clasificador(image): | |
results = classifier(image) | |
result = {} | |
for item in results: | |
result[translate_text(item['label'])] = item['score'] | |
return result | |
es_en_translator = pipeline("translation",model = "Helsinki-NLP/opus-mt-es-en") | |
def translate_text(text): | |
print(text) | |
text = es_en_translator(text)[0].get("translation_text") | |
print(text) | |
return text | |
with gr.Blocks(title = "Uso de AI para la clasificación de imágenes.") as demo: | |
gr.Markdown(""" | |
<center> | |
<h1> | |
Uso de AI para la clasificación de imágenes. | |
</h1> | |
<img src='data:image/jpg;base64,{}' width=200px> | |
<h3> | |
Con este espacio podrás clasificar imágenes y objetos a partir de una imagen. | |
</h3> | |
</center> | |
""".format(encoded_image)) | |
with gr.Row(): | |
with gr.Column(): | |
inputt = gr.Image(type="pil", label="Ingresá la imagen a clasificar.") | |
button = gr.Button(value="Clasificar") | |
examples = gr.Examples(examples=[os.path.join(os.path.dirname(__file__), "palacio.jpeg")],inputs=[inputt]) | |
with gr.Column(): | |
output = gr.Label() | |
button.click(clasificador,inputt,output) | |
demo.launch() | |