Spaces:
Running
Running
File size: 3,285 Bytes
6291761 f468207 6291761 f468207 6291761 f468207 6291761 f468207 6291761 f468207 6291761 f468207 6291761 f468207 6291761 f468207 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
import streamlit as st
import os
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceHubEmbeddings
from langchain.vectorstores import FAISS
from langchain.llms import HuggingFaceHub
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
st.set_page_config(page_title='preguntaDOC')
st.header("Pregunta a tu PDF")
# Campo para el token de Hugging Face (ahora requerido para los embeddings)
huggingface_api_token = st.text_input('Hugging Face API Token (requerido)', type='password')
pdf_obj = st.file_uploader("Carga tu documento", type="pdf", on_change=st.cache_resource.clear)
@st.cache_resource
def create_embeddings(pdf, api_token):
if not api_token:
st.error("Se requiere un token de API de Hugging Face")
return None
os.environ["HUGGINGFACEHUB_API_TOKEN"] = api_token
pdf_reader = PdfReader(pdf)
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=800,
chunk_overlap=100,
length_function=len
)
chunks = text_splitter.split_text(text)
# Usar HuggingFaceHubEmbeddings en lugar de HuggingFaceEmbeddings
# Este enfoque no requiere sentence-transformers instalado localmente
embeddings = HuggingFaceHubEmbeddings(
repo_id="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
huggingfacehub_api_token=api_token
)
knowledge_base = FAISS.from_texts(chunks, embeddings)
return knowledge_base
if pdf_obj and huggingface_api_token:
knowledge_base = create_embeddings(pdf_obj, huggingface_api_token)
if knowledge_base:
user_question = st.text_input("Haz una pregunta sobre tu PDF:")
if user_question:
docs = knowledge_base.similarity_search(user_question, 3)
# Usar un modelo gratuito de Hugging Face
llm = HuggingFaceHub(
repo_id="google/flan-t5-large",
huggingfacehub_api_token=huggingface_api_token,
model_kwargs={"temperature": 0.5, "max_length": 512}
)
prompt_template = """
Responde a la siguiente pregunta basándote únicamente en el contexto proporcionado.
Contexto: {context}
Pregunta: {question}
Respuesta:
"""
PROMPT = PromptTemplate(
template=prompt_template,
input_variables=["context", "question"]
)
chain = load_qa_chain(llm, chain_type="stuff", prompt=PROMPT)
with st.spinner("Procesando tu pregunta..."):
try:
respuesta = chain.run(input_documents=docs, question=user_question)
st.write(respuesta)
except Exception as e:
st.error(f"Error al procesar tu pregunta: {str(e)}")
elif not huggingface_api_token and pdf_obj:
st.warning("Por favor, ingresa tu token de API de Hugging Face para continuar.")
|