Spaces:
Running
Running
import streamlit as st | |
import os | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.llms import HuggingFaceHub | |
from langchain.chains.question_answering import load_qa_chain | |
from langchain.prompts import PromptTemplate | |
st.set_page_config(page_title='preguntaDOC') | |
st.header("Pregunta a tu PDF") | |
# Ya no necesitamos la clave de OpenAI | |
huggingface_api_token = st.text_input('Hugging Face API Token (opcional)', type='password') | |
pdf_obj = st.file_uploader("Carga tu documento", type="pdf", on_change=st.cache_resource.clear) | |
def create_embeddings(pdf): | |
pdf_reader = PdfReader(pdf) | |
text = "" | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=800, | |
chunk_overlap=100, | |
length_function=len | |
) | |
chunks = text_splitter.split_text(text) | |
# Usando el mismo modelo de embeddings que ya estabas usando | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2") | |
knowledge_base = FAISS.from_texts(chunks, embeddings) | |
return knowledge_base | |
if pdf_obj: | |
knowledge_base = create_embeddings(pdf_obj) | |
user_question = st.text_input("Haz una pregunta sobre tu PDF:") | |
if user_question: | |
# Configurar el token de Hugging Face si se proporciona | |
if huggingface_api_token: | |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = huggingface_api_token | |
docs = knowledge_base.similarity_search(user_question, 3) | |
# Usar un modelo gratuito de Hugging Face en lugar de OpenAI | |
llm = HuggingFaceHub( | |
repo_id="google/flan-t5-large", # Modelo gratuito con buenas capacidades para Q&A | |
model_kwargs={"temperature": 0.5, "max_length": 512} | |
) | |
# Crear un prompt template adecuado para modelos como T5 | |
prompt_template = """ | |
Responde a la siguiente pregunta basándote únicamente en el contexto proporcionado. | |
Contexto: {context} | |
Pregunta: {question} | |
Respuesta: | |
""" | |
PROMPT = PromptTemplate( | |
template=prompt_template, | |
input_variables=["context", "question"] | |
) | |
chain = load_qa_chain(llm, chain_type="stuff", prompt=PROMPT) | |
# Mostrar un mensaje mientras se procesa | |
with st.spinner("Procesando tu pregunta..."): | |
try: | |
respuesta = chain.run(input_documents=docs, question=user_question) | |
st.write(respuesta) | |
except Exception as e: | |
st.error(f"Error al procesar tu pregunta: {str(e)}") | |
st.info("Si no has proporcionado un token de Hugging Face, considera hacerlo para evitar limitaciones de rate limit.") | |