Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,46 +1,60 @@
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
-
|
4 |
from PyPDF2 import PdfReader
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
7 |
from langchain.vectorstores import FAISS
|
8 |
from langchain.chat_models import ChatOpenAI
|
9 |
from langchain.chains.question_answering import load_qa_chain
|
10 |
|
11 |
-
st.set_page_config('preguntaDOC')
|
12 |
st.header("Pregunta a tu PDF")
|
|
|
13 |
OPENAI_API_KEY = st.text_input('OpenAI API Key', type='password')
|
|
|
|
|
14 |
pdf_obj = st.file_uploader("Carga tu documento", type="pdf", on_change=st.cache_resource.clear)
|
15 |
|
16 |
@st.cache_resource
|
17 |
-
def create_embeddings(pdf):
|
|
|
|
|
18 |
pdf_reader = PdfReader(pdf)
|
19 |
text = ""
|
20 |
for page in pdf_reader.pages:
|
21 |
text += page.extract_text()
|
22 |
-
|
23 |
text_splitter = RecursiveCharacterTextSplitter(
|
24 |
chunk_size=800,
|
25 |
chunk_overlap=100,
|
26 |
length_function=len
|
27 |
-
|
28 |
chunks = text_splitter.split_text(text)
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
31 |
knowledge_base = FAISS.from_texts(chunks, embeddings)
|
32 |
-
|
33 |
return knowledge_base
|
34 |
|
35 |
-
if pdf_obj:
|
36 |
-
knowledge_base = create_embeddings(pdf_obj)
|
37 |
user_question = st.text_input("Haz una pregunta sobre tu PDF:")
|
38 |
-
|
39 |
-
if user_question:
|
40 |
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
|
41 |
docs = knowledge_base.similarity_search(user_question, 3)
|
42 |
llm = ChatOpenAI(model_name='gpt-3.5-turbo')
|
43 |
chain = load_qa_chain(llm, chain_type="stuff")
|
44 |
-
|
45 |
-
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import os
|
|
|
3 |
from PyPDF2 import PdfReader
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
+
from langchain.embeddings import HuggingFaceHubEmbeddings # Cambiado desde HuggingFaceEmbeddings
|
6 |
from langchain.vectorstores import FAISS
|
7 |
from langchain.chat_models import ChatOpenAI
|
8 |
from langchain.chains.question_answering import load_qa_chain
|
9 |
|
10 |
+
st.set_page_config(page_title='preguntaDOC')
|
11 |
st.header("Pregunta a tu PDF")
|
12 |
+
|
13 |
OPENAI_API_KEY = st.text_input('OpenAI API Key', type='password')
|
14 |
+
HUGGINGFACE_API_KEY = st.text_input('Hugging Face API Key', type='password') # Añadido para la API de Hugging Face
|
15 |
+
|
16 |
pdf_obj = st.file_uploader("Carga tu documento", type="pdf", on_change=st.cache_resource.clear)
|
17 |
|
18 |
@st.cache_resource
|
19 |
+
def create_embeddings(pdf, hf_api_key):
|
20 |
+
os.environ["HUGGINGFACEHUB_API_TOKEN"] = hf_api_key # Configurar token de HF
|
21 |
+
|
22 |
pdf_reader = PdfReader(pdf)
|
23 |
text = ""
|
24 |
for page in pdf_reader.pages:
|
25 |
text += page.extract_text()
|
26 |
+
|
27 |
text_splitter = RecursiveCharacterTextSplitter(
|
28 |
chunk_size=800,
|
29 |
chunk_overlap=100,
|
30 |
length_function=len
|
31 |
+
)
|
32 |
chunks = text_splitter.split_text(text)
|
33 |
+
|
34 |
+
# Usar HuggingFaceHubEmbeddings en lugar de HuggingFaceEmbeddings
|
35 |
+
embeddings = HuggingFaceHubEmbeddings(
|
36 |
+
repo_id="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
|
37 |
+
huggingfacehub_api_token=hf_api_key
|
38 |
+
)
|
39 |
+
|
40 |
knowledge_base = FAISS.from_texts(chunks, embeddings)
|
|
|
41 |
return knowledge_base
|
42 |
|
43 |
+
if pdf_obj and HUGGINGFACE_API_KEY:
|
44 |
+
knowledge_base = create_embeddings(pdf_obj, HUGGINGFACE_API_KEY)
|
45 |
user_question = st.text_input("Haz una pregunta sobre tu PDF:")
|
46 |
+
|
47 |
+
if user_question and OPENAI_API_KEY:
|
48 |
os.environ["OPENAI_API_KEY"] = OPENAI_API_KEY
|
49 |
docs = knowledge_base.similarity_search(user_question, 3)
|
50 |
llm = ChatOpenAI(model_name='gpt-3.5-turbo')
|
51 |
chain = load_qa_chain(llm, chain_type="stuff")
|
52 |
+
|
53 |
+
with st.spinner("Procesando tu pregunta..."):
|
54 |
+
try:
|
55 |
+
respuesta = chain.run(input_documents=docs, question=user_question)
|
56 |
+
st.write(respuesta)
|
57 |
+
except Exception as e:
|
58 |
+
st.error(f"Error: {str(e)}")
|
59 |
+
elif pdf_obj and not HUGGINGFACE_API_KEY:
|
60 |
+
st.warning("Por favor, introduce una clave API de Hugging Face para procesar el documento.")
|