Spaces:
Running
Running
import gradio as gr | |
from transformers import pipeline | |
from datasets import load_dataset | |
classifier = pipeline("text-classification", model="CesarLeblanc/test_model") | |
dataset = load_dataset("CesarLeblanc/text_classification_dataset") | |
def text_classification(text): | |
result = classifier(text) | |
habitat_label = result[0]['label'] | |
habitat_label = dataset['train'].features['label'].names[int(habitat_label.split('_')[1])] | |
habitat_score = result[0]['score'] | |
formatted_output = f"This vegetation plot belongs to the habitat {habitat_label} with the probability {habitat_score*100:.2f}%" | |
image_output = gr.Image(value='N13.jpg', type="filepath") | |
return formatted_output, image_output | |
examples=["sparganium erectum, calystegia sepium, persicaria amphibia", "thinopyrum junceum, cakile maritima"] | |
io = gr.Interface(fn=text_classification, | |
inputs= gr.Textbox(lines=2, label="List of comma-separated binomial names of species (see examples)", placeholder="Enter species here..."), | |
outputs=[gr.Textbox(lines=2, label="Vegetation Plot Classification Result"), "image"], | |
title="Pl@ntBERT", | |
description="Vegetation Plot Classification: enter the species found in a vegetation plot and see its EUNIS habitat!", | |
examples=examples) | |
io.launch() |