plantbert_space / app.py
CesarLeblanc's picture
Upload app.py
a5316e5
raw
history blame
902 Bytes
import gradio as gr
from transformers import pipeline
classifier = pipeline("text-classification", model="CesarLeblanc/test_model")
def text_classification(text):
result = classifier(text)
habitat_label = result[0]['label']
habitat_score = result[0]['score']
formatted_output = f"This sentiment is {habitat_label} with the probability {habitat_score*100:.2f}%"
return formatted_output
examples=["Vegetation Plot 1", "Vegetation Plot 2"]
io = gr.Interface(fn=text_classification,
inputs= gr.Textbox(lines=2, label="Text", placeholder="Enter title here..."),
outputs=gr.Textbox(lines=2, label="Text Classification Result"),
title="Text Classification",
description="Enter a text and see the text classification result!",
examples=examples)
io.launch()