Spaces:
Running
Running
CesarLeblanc
commited on
Commit
•
3fcba4f
1
Parent(s):
2af4114
Update app.py
Browse files
app.py
CHANGED
@@ -5,11 +5,7 @@ from bs4 import BeautifulSoup
|
|
5 |
import random
|
6 |
|
7 |
classification_model = pipeline("text-classification", model="plantbert_text_classification_model", tokenizer="plantbert_text_classification_model")
|
8 |
-
mask_model = pipeline("fill-mask", model="plantbert_fill_mask_model", tokenizer="plantbert_fill_mask_model", top_k=
|
9 |
-
|
10 |
-
def return_text(habitat_label):
|
11 |
-
text = f"This vegetation plot belongs to the habitat {habitat_label}."
|
12 |
-
return text
|
13 |
|
14 |
def return_habitat_image(habitat_label):
|
15 |
floraveg_url = f"https://floraveg.eu/habitat/overview/{habitat_label}"
|
@@ -23,7 +19,7 @@ def return_habitat_image(habitat_label):
|
|
23 |
image_url = "https://www.salonlfc.com/wp-content/uploads/2018/01/image-not-found-scaled-1150x647.png"
|
24 |
else:
|
25 |
image_url = "https://www.salonlfc.com/wp-content/uploads/2018/01/image-not-found-scaled-1150x647.png"
|
26 |
-
image_url = "https://www.commissionoceanindien.org/wp-content/uploads/2018/07/plantnet.jpg"
|
27 |
image = gr.Image(value=image_url)
|
28 |
return image
|
29 |
|
@@ -70,9 +66,9 @@ def classification(text):
|
|
70 |
text = gbif_normalization(text)
|
71 |
result = classification_model(text)
|
72 |
habitat_label = result[0]['label']
|
73 |
-
|
74 |
image_output = return_habitat_image(habitat_label)
|
75 |
-
return
|
76 |
|
77 |
def masking(text):
|
78 |
text = gbif_normalization(text)
|
@@ -141,7 +137,7 @@ def masking(text):
|
|
141 |
best_position = len(text.split(', '))
|
142 |
best_sentence = sentence
|
143 |
|
144 |
-
text = f"The most likely missing species is {best_prediction}
|
145 |
image = return_species_image(best_prediction)
|
146 |
return text, image
|
147 |
|
|
|
5 |
import random
|
6 |
|
7 |
classification_model = pipeline("text-classification", model="plantbert_text_classification_model", tokenizer="plantbert_text_classification_model")
|
8 |
+
mask_model = pipeline("fill-mask", model="plantbert_fill_mask_model", tokenizer="plantbert_fill_mask_model", top_k=100)
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def return_habitat_image(habitat_label):
|
11 |
floraveg_url = f"https://floraveg.eu/habitat/overview/{habitat_label}"
|
|
|
19 |
image_url = "https://www.salonlfc.com/wp-content/uploads/2018/01/image-not-found-scaled-1150x647.png"
|
20 |
else:
|
21 |
image_url = "https://www.salonlfc.com/wp-content/uploads/2018/01/image-not-found-scaled-1150x647.png"
|
22 |
+
image_url = "https://www.commissionoceanindien.org/wp-content/uploads/2018/07/plantnet.jpg" # While we don't have the rights
|
23 |
image = gr.Image(value=image_url)
|
24 |
return image
|
25 |
|
|
|
66 |
text = gbif_normalization(text)
|
67 |
result = classification_model(text)
|
68 |
habitat_label = result[0]['label']
|
69 |
+
text = f"This vegetation plot belongs to the habitat {habitat_label}."
|
70 |
image_output = return_habitat_image(habitat_label)
|
71 |
+
return text, image_output
|
72 |
|
73 |
def masking(text):
|
74 |
text = gbif_normalization(text)
|
|
|
137 |
best_position = len(text.split(', '))
|
138 |
best_sentence = sentence
|
139 |
|
140 |
+
text = f"The most likely missing species is {best_prediction} (position {best_position}).\nThe new vegetation plot is {best_sentence}."
|
141 |
image = return_species_image(best_prediction)
|
142 |
return text, image
|
143 |
|