Spaces:
Runtime error
Runtime error
CesarLeblanc
commited on
Commit
•
4e59324
1
Parent(s):
142304a
app.py
CHANGED
@@ -79,37 +79,50 @@ def classification(text, k):
|
|
79 |
image_output = return_habitat_image(habitat_labels[0])
|
80 |
return text, image_output
|
81 |
|
82 |
-
def masking(text):
|
83 |
text = gbif_normalization(text)
|
84 |
text_split = text.split(', ')
|
85 |
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
|
103 |
-
|
104 |
-
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
image = return_species_image(best_prediction)
|
114 |
return text, image
|
115 |
|
@@ -122,26 +135,27 @@ with gr.Blocks() as demo:
|
|
122 |
with gr.Row():
|
123 |
with gr.Column():
|
124 |
species_classification = gr.Textbox(lines=2, label="Species", placeholder="Enter a list of comma-separated binomial names here.")
|
125 |
-
k_classification = gr.Slider(1, 5, value=1, label="Top-k", info="Choose the number of top habitats to display.")
|
126 |
with gr.Column():
|
127 |
-
|
128 |
-
|
129 |
button_classification = gr.Button("Classify")
|
130 |
gr.Markdown("""<h5 style="text-align: center;">An example of input</h5>""")
|
131 |
-
gr.Examples([["sparganium erectum, calystegia sepium, persicaria amphibia", 1]], [species_classification, k_classification], [
|
132 |
|
133 |
with gr.Tab("Missing species finding"):
|
134 |
gr.Markdown("""<h3 style="text-align: center;">Finding the missing species!</h3>""")
|
135 |
with gr.Row():
|
136 |
species_masking = gr.Textbox(lines=2, label="Species", placeholder="Enter a list of comma-separated binomial names here.")
|
|
|
137 |
with gr.Column():
|
138 |
-
|
139 |
-
|
140 |
button_masking = gr.Button("Find")
|
141 |
gr.Markdown("""<h5 style="text-align: center;">An example of input</h5>""")
|
142 |
-
gr.Examples([["vaccinium myrtillus, dryopteris dilatata, molinia caerulea"]], [species_masking], [
|
143 |
|
144 |
-
button_classification.click(classification, inputs=[species_classification, k_classification], outputs=[
|
145 |
-
button_masking.click(masking, inputs=[species_masking], outputs=[
|
146 |
|
147 |
demo.launch()
|
|
|
79 |
image_output = return_habitat_image(habitat_labels[0])
|
80 |
return text, image_output
|
81 |
|
82 |
+
def masking(text, k):
|
83 |
text = gbif_normalization(text)
|
84 |
text_split = text.split(', ')
|
85 |
|
86 |
+
best_predictions = []
|
87 |
+
best_positions = []
|
88 |
+
best_sentences = []
|
89 |
+
|
90 |
+
for _ in range(k):
|
91 |
+
max_score = 0
|
92 |
+
best_prediction = None
|
93 |
+
best_position = None
|
94 |
+
best_sentence = None
|
95 |
|
96 |
+
for i in range(len(text_split) + 1):
|
97 |
+
masked_text = ', '.join(text_split[:i] + ['[MASK]'] + text_split[i:])
|
98 |
+
|
99 |
+
j = 0
|
100 |
+
while True:
|
101 |
+
prediction = mask_model(masked_text)[j]
|
102 |
+
species = prediction['token_str']
|
103 |
+
if species in text_split or species in best_predictions:
|
104 |
+
j += 1
|
105 |
+
else:
|
106 |
+
break
|
107 |
|
108 |
+
score = prediction['score']
|
109 |
+
sentence = prediction['sequence']
|
110 |
|
111 |
+
if score > max_score:
|
112 |
+
max_score = score
|
113 |
+
best_prediction = species
|
114 |
+
best_position = i
|
115 |
+
best_sentence = sentence
|
116 |
+
|
117 |
+
best_predictions.append(best_prediction)
|
118 |
+
best_positions.append(best_position)
|
119 |
+
best_sentences.append(best_sentence)
|
120 |
+
text_split.insert(best_position, best_prediction)
|
121 |
+
if k == 1:
|
122 |
+
text = f"The most likely missing species is {best_predictions[0]} (position {best_positions[0]})."
|
123 |
+
else:
|
124 |
+
text = f"The most likely missing species are {', '.join(best_predictions[:-1])} and {best_predictions[-1]} (positions {', '.join(map(str, best_positions[:-1]))} and {best_positions[-1]})."
|
125 |
+
text += f"\nThe new vegetation plot is {best_sentences[-1]}. (see image of the most likely species below)."
|
126 |
image = return_species_image(best_prediction)
|
127 |
return text, image
|
128 |
|
|
|
135 |
with gr.Row():
|
136 |
with gr.Column():
|
137 |
species_classification = gr.Textbox(lines=2, label="Species", placeholder="Enter a list of comma-separated binomial names here.")
|
138 |
+
k_classification = gr.Slider(1, 5, value=1, step=1, label="Top-k", info="Choose the number of top habitats to display.")
|
139 |
with gr.Column():
|
140 |
+
text_classification = gr.Textbox()
|
141 |
+
image_classification = gr.Image()
|
142 |
button_classification = gr.Button("Classify")
|
143 |
gr.Markdown("""<h5 style="text-align: center;">An example of input</h5>""")
|
144 |
+
gr.Examples([["sparganium erectum, calystegia sepium, persicaria amphibia", 1]], [species_classification, k_classification], [text_classification, image_classification], classification, True)
|
145 |
|
146 |
with gr.Tab("Missing species finding"):
|
147 |
gr.Markdown("""<h3 style="text-align: center;">Finding the missing species!</h3>""")
|
148 |
with gr.Row():
|
149 |
species_masking = gr.Textbox(lines=2, label="Species", placeholder="Enter a list of comma-separated binomial names here.")
|
150 |
+
k_masking = gr.Slider(1, 5, value=1, step=1, label="Top-k", info="Choose the number of top missing species to find.")
|
151 |
with gr.Column():
|
152 |
+
text_masking = gr.Textbox()
|
153 |
+
image_masking = gr.Image()
|
154 |
button_masking = gr.Button("Find")
|
155 |
gr.Markdown("""<h5 style="text-align: center;">An example of input</h5>""")
|
156 |
+
gr.Examples([["vaccinium myrtillus, dryopteris dilatata, molinia caerulea", 1]], [species_masking, k_masking], [text_masking, image_masking], masking, True)
|
157 |
|
158 |
+
button_classification.click(classification, inputs=[species_classification, k_classification], outputs=[textclassification, image_classification])
|
159 |
+
button_masking.click(masking, inputs=[species_masking, k_masking], outputs=[text_masking, image_masking])
|
160 |
|
161 |
demo.launch()
|