Spaces:
Runtime error
Runtime error
CesarLeblanc
commited on
Commit
•
6176ef8
1
Parent(s):
a7e54a7
Update app.py
Browse files
app.py
CHANGED
@@ -4,15 +4,25 @@ from datasets import load_dataset
|
|
4 |
import requests
|
5 |
from bs4 import BeautifulSoup
|
6 |
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
def
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
floraveg_url = f"https://floraveg.eu/habitat/overview/{habitat_label}"
|
17 |
response = requests.get(floraveg_url)
|
18 |
if response.status_code == 200:
|
@@ -21,22 +31,66 @@ def text_classification(text, typology, confidence):
|
|
21 |
if img_tag:
|
22 |
image_url = img_tag['src']
|
23 |
else:
|
24 |
-
image_url =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
else:
|
26 |
-
|
27 |
-
image_output = gr.Image(value=image_url)
|
28 |
return formatted_output, image_output
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
examples=[
|
31 |
-
["sparganium erectum, calystegia sepium, persicaria amphibia", "EUNIS",
|
32 |
-
["thinopyrum junceum, cakile maritima", "EUNIS",
|
33 |
]
|
34 |
|
35 |
-
io = gr.Interface(fn=
|
36 |
-
inputs=
|
37 |
-
outputs=
|
38 |
-
title=
|
39 |
-
description=
|
40 |
examples=examples)
|
41 |
|
42 |
io.launch()
|
|
|
4 |
import requests
|
5 |
from bs4 import BeautifulSoup
|
6 |
|
7 |
+
def return_model(task):
|
8 |
+
if task == 'classification':
|
9 |
+
model = pipeline("text-classification", model="CesarLeblanc/test_model")
|
10 |
+
else:
|
11 |
+
model = pipeline("fill-mask", model="CesarLeblanc/fill_mask_model")
|
12 |
+
return return_model
|
13 |
|
14 |
+
def return_dataset():
|
15 |
+
dataset = load_dataset("CesarLeblanc/text_classification_dataset")
|
16 |
+
return dataset
|
17 |
+
|
18 |
+
def return_text(habitat_label, habitat_score, confidence):
|
19 |
+
if habitat_score*100 > confidence:
|
20 |
+
text = f"This vegetation plot belongs to the habitat {habitat_label} with the probability {habitat_score*100:.2f}%."
|
21 |
+
else:
|
22 |
+
text = f"We can't assign an habitat to this vegetation plot with a confidence of at least {confidence}%."
|
23 |
+
return text
|
24 |
+
|
25 |
+
def return_image(habitat_label, habitat_score, confidence):
|
26 |
floraveg_url = f"https://floraveg.eu/habitat/overview/{habitat_label}"
|
27 |
response = requests.get(floraveg_url)
|
28 |
if response.status_code == 200:
|
|
|
31 |
if img_tag:
|
32 |
image_url = img_tag['src']
|
33 |
else:
|
34 |
+
image_url = "https://www.salonlfc.com/wp-content/uploads/2018/01/image-not-found-scaled-1150x647.png"
|
35 |
+
else:
|
36 |
+
image_url = "https://www.salonlfc.com/wp-content/uploads/2018/01/image-not-found-scaled-1150x647.png"
|
37 |
+
if habitat_score*100 < confidence:
|
38 |
+
image_url = "https://www.salonlfc.com/wp-content/uploads/2018/01/image-not-found-scaled-1150x647.png"
|
39 |
+
image = gr.Image(value=image_url)
|
40 |
+
return image
|
41 |
+
|
42 |
+
def classification(text, typology, confidence, task):
|
43 |
+
model = return_model(task)
|
44 |
+
dataset = return_dataset()
|
45 |
+
result = model(text)
|
46 |
+
habitat_label = result[0]['label']
|
47 |
+
habitat_label = dataset['train'].features['label'].names[int(habitat_label.split('_')[1])]
|
48 |
+
habitat_score = result[0]['score']
|
49 |
+
formatted_output = return_text(habitat_label, habitat_score, confidence)
|
50 |
+
image_output = return_image(habitat_label, habitat_score, confidence)
|
51 |
+
return formatted_output, image_output
|
52 |
+
|
53 |
+
def masking(text, task):
|
54 |
+
model = return_model(task)
|
55 |
+
text += ', [MASK] [MASK]'
|
56 |
+
pred = mask_filler(text, top_k=1)
|
57 |
+
text = pred[0]["sequence"]
|
58 |
+
image = gr.Image(value="https://www.salonlfc.com/wp-content/uploads/2018/01/image-not-found-scaled-1150x647.png")
|
59 |
+
return text, image
|
60 |
+
|
61 |
+
def plantbert(text, typology, confidence, task):
|
62 |
+
if task == "classification":
|
63 |
+
formatted_output, image_output = classification(text, typology, confidence, task)
|
64 |
else:
|
65 |
+
formatted_output, image_output = masking(text, typology, confidence, task)
|
|
|
66 |
return formatted_output, image_output
|
67 |
|
68 |
+
inputs=[
|
69 |
+
gr.Textbox(lines=2, label="Species", placeholder="Enter a list of comma-separated binomial names here."),
|
70 |
+
gr.Dropdown(["EUNIS"], value="EUNIS", label="Typology", info="Will add more typologies later!"),
|
71 |
+
gr.Slider(0, 100, value=90, label="Confidence", info="Choose the level of confidence for the prediction.")
|
72 |
+
gr.Radio(["classification", "masking"], value="classification", label="Task", info="Which task to choose?"),
|
73 |
+
]
|
74 |
+
|
75 |
+
outputs=[
|
76 |
+
gr.Textbox(lines=2, label="Vegetation Plot Classification Result"),
|
77 |
+
"image"
|
78 |
+
]
|
79 |
+
|
80 |
+
title="Pl@ntBERT"
|
81 |
+
|
82 |
+
description="Vegetation Plot Classification: enter the species found in a vegetation plot and see its EUNIS habitat!"
|
83 |
+
|
84 |
examples=[
|
85 |
+
["sparganium erectum, calystegia sepium, persicaria amphibia", "EUNIS", 90, "classification"],
|
86 |
+
["thinopyrum junceum, cakile maritima", "EUNIS", 90, "masking"]
|
87 |
]
|
88 |
|
89 |
+
io = gr.Interface(fn=plantbert,
|
90 |
+
inputs=inputs,
|
91 |
+
outputs=outputs,
|
92 |
+
title=title,
|
93 |
+
description=description,
|
94 |
examples=examples)
|
95 |
|
96 |
io.launch()
|