Spaces:
Running
Running
CesarLeblanc
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -86,17 +86,20 @@ def masking(text):
|
|
86 |
max_score = 0
|
87 |
best_prediction = None
|
88 |
best_position = None
|
|
|
89 |
|
90 |
# Case for the first position
|
91 |
masked_text = "[MASK], " + ', '.join(text.split(', '))
|
92 |
prediction = mask_model(masked_text)[0]
|
93 |
species = prediction['token_str']
|
94 |
score = prediction['score']
|
|
|
95 |
|
96 |
if score > max_score:
|
97 |
max_score = score
|
98 |
best_prediction = species
|
99 |
best_position = 0
|
|
|
100 |
|
101 |
# Loop through each position in the middle of the sentence
|
102 |
for i in range(1, len(text.split(', '))):
|
@@ -104,25 +107,29 @@ def masking(text):
|
|
104 |
prediction = mask_model(masked_text)[0]
|
105 |
species = prediction['token_str']
|
106 |
score = prediction['score']
|
|
|
107 |
|
108 |
# Update best prediction and position if score is higher
|
109 |
if score > max_score:
|
110 |
max_score = score
|
111 |
best_prediction = species
|
112 |
best_position = i
|
|
|
113 |
|
114 |
# Case for the last position
|
115 |
masked_text = ', '.join(text.split(', ')) + ', [MASK]'
|
116 |
prediction = mask_model(masked_text)[0]
|
117 |
species = prediction['token_str']
|
118 |
score = prediction['score']
|
|
|
119 |
|
120 |
if score > max_score:
|
121 |
max_score = score
|
122 |
best_prediction = species
|
123 |
best_position = len(text.split(', '))
|
|
|
124 |
|
125 |
-
text = f"The most likely missing species
|
126 |
image = return_species_image(best_prediction)
|
127 |
return text, image
|
128 |
|
|
|
86 |
max_score = 0
|
87 |
best_prediction = None
|
88 |
best_position = None
|
89 |
+
best_sentence = None
|
90 |
|
91 |
# Case for the first position
|
92 |
masked_text = "[MASK], " + ', '.join(text.split(', '))
|
93 |
prediction = mask_model(masked_text)[0]
|
94 |
species = prediction['token_str']
|
95 |
score = prediction['score']
|
96 |
+
sentence = prediction['sequence']
|
97 |
|
98 |
if score > max_score:
|
99 |
max_score = score
|
100 |
best_prediction = species
|
101 |
best_position = 0
|
102 |
+
best_sentence = sentence
|
103 |
|
104 |
# Loop through each position in the middle of the sentence
|
105 |
for i in range(1, len(text.split(', '))):
|
|
|
107 |
prediction = mask_model(masked_text)[0]
|
108 |
species = prediction['token_str']
|
109 |
score = prediction['score']
|
110 |
+
sentence = prediction['sequence']
|
111 |
|
112 |
# Update best prediction and position if score is higher
|
113 |
if score > max_score:
|
114 |
max_score = score
|
115 |
best_prediction = species
|
116 |
best_position = i
|
117 |
+
best_sentence = sentence
|
118 |
|
119 |
# Case for the last position
|
120 |
masked_text = ', '.join(text.split(', ')) + ', [MASK]'
|
121 |
prediction = mask_model(masked_text)[0]
|
122 |
species = prediction['token_str']
|
123 |
score = prediction['score']
|
124 |
+
sentence = prediction['sequence']
|
125 |
|
126 |
if score > max_score:
|
127 |
max_score = score
|
128 |
best_prediction = species
|
129 |
best_position = len(text.split(', '))
|
130 |
+
best_sentence = sentence
|
131 |
|
132 |
+
text = f"The most likely missing species is {best_prediction} at position {best_position}.\nThe new vegetation plot is {best_sentence}."
|
133 |
image = return_species_image(best_prediction)
|
134 |
return text, image
|
135 |
|