Spaces:
Running
Running
CesarLeblanc
commited on
Commit
•
f37b5da
1
Parent(s):
d8018cd
Update app.py
Browse files
app.py
CHANGED
@@ -7,14 +7,11 @@ import random
|
|
7 |
classification_model = pipeline("text-classification", model="plantbert_text_classification_model", tokenizer="plantbert_text_classification_model")
|
8 |
mask_model = pipeline("fill-mask", model="plantbert_fill_mask_model", tokenizer="plantbert_fill_mask_model", top_k=14189)
|
9 |
|
10 |
-
def return_text(habitat_label
|
11 |
-
|
12 |
-
text = f"This vegetation plot belongs to the habitat {habitat_label} with the probability {habitat_score*100:.2f}%."
|
13 |
-
else:
|
14 |
-
text = f"We can't assign an habitat to this vegetation plot with a confidence of at least {confidence}%."
|
15 |
return text
|
16 |
|
17 |
-
def return_habitat_image(habitat_label
|
18 |
floraveg_url = f"https://floraveg.eu/habitat/overview/{habitat_label}"
|
19 |
response = requests.get(floraveg_url)
|
20 |
if response.status_code == 200:
|
@@ -26,8 +23,6 @@ def return_habitat_image(habitat_label, habitat_score, confidence):
|
|
26 |
image_url = "https://www.salonlfc.com/wp-content/uploads/2018/01/image-not-found-scaled-1150x647.png"
|
27 |
else:
|
28 |
image_url = "https://www.salonlfc.com/wp-content/uploads/2018/01/image-not-found-scaled-1150x647.png"
|
29 |
-
if habitat_score*100 < confidence:
|
30 |
-
image_url = "https://www.salonlfc.com/wp-content/uploads/2018/01/image-not-found-scaled-1150x647.png"
|
31 |
image_url = "https://www.commissionoceanindien.org/wp-content/uploads/2018/07/plantnet.jpg"
|
32 |
image = gr.Image(value=image_url)
|
33 |
return image
|
@@ -71,13 +66,12 @@ def gbif_normalization(text):
|
|
71 |
text = text.lower()
|
72 |
return text
|
73 |
|
74 |
-
def classification(text
|
75 |
text = gbif_normalization(text)
|
76 |
result = classification_model(text)
|
77 |
habitat_label = result[0]['label']
|
78 |
-
|
79 |
-
|
80 |
-
image_output = return_habitat_image(habitat_label, habitat_score, confidence)
|
81 |
return formatted_output, image_output
|
82 |
|
83 |
def masking(text):
|
@@ -159,14 +153,12 @@ with gr.Blocks() as demo:
|
|
159 |
with gr.Row():
|
160 |
with gr.Column():
|
161 |
species = gr.Textbox(lines=2, label="Species", placeholder="Enter a list of comma-separated binomial names here.")
|
162 |
-
typology = gr.Dropdown(["EUNIS"], value="EUNIS", label="Typology", info="Will add more typologies later!")
|
163 |
-
confidence = gr.Slider(0, 100, value=90, label="Confidence", info="Choose the level of confidence for the prediction.")
|
164 |
with gr.Column():
|
165 |
text_output_1 = gr.Textbox()
|
166 |
text_output_2 = gr.Image()
|
167 |
text_button = gr.Button("Classify")
|
168 |
gr.Markdown("""<h5 style="text-align: center;">An example of input</h5>""")
|
169 |
-
gr.Examples([["sparganium erectum, calystegia sepium, persicaria amphibia"
|
170 |
|
171 |
with gr.Tab("Missing species finding"):
|
172 |
gr.Markdown("""<h3 style="text-align: center;">Finding the missing species!</h3>""")
|
|
|
7 |
classification_model = pipeline("text-classification", model="plantbert_text_classification_model", tokenizer="plantbert_text_classification_model")
|
8 |
mask_model = pipeline("fill-mask", model="plantbert_fill_mask_model", tokenizer="plantbert_fill_mask_model", top_k=14189)
|
9 |
|
10 |
+
def return_text(habitat_label):
|
11 |
+
text = f"This vegetation plot belongs to the habitat {habitat_label}."
|
|
|
|
|
|
|
12 |
return text
|
13 |
|
14 |
+
def return_habitat_image(habitat_label):
|
15 |
floraveg_url = f"https://floraveg.eu/habitat/overview/{habitat_label}"
|
16 |
response = requests.get(floraveg_url)
|
17 |
if response.status_code == 200:
|
|
|
23 |
image_url = "https://www.salonlfc.com/wp-content/uploads/2018/01/image-not-found-scaled-1150x647.png"
|
24 |
else:
|
25 |
image_url = "https://www.salonlfc.com/wp-content/uploads/2018/01/image-not-found-scaled-1150x647.png"
|
|
|
|
|
26 |
image_url = "https://www.commissionoceanindien.org/wp-content/uploads/2018/07/plantnet.jpg"
|
27 |
image = gr.Image(value=image_url)
|
28 |
return image
|
|
|
66 |
text = text.lower()
|
67 |
return text
|
68 |
|
69 |
+
def classification(text):
|
70 |
text = gbif_normalization(text)
|
71 |
result = classification_model(text)
|
72 |
habitat_label = result[0]['label']
|
73 |
+
formatted_output = return_text(habitat_label)
|
74 |
+
image_output = return_habitat_image(habitat_label)
|
|
|
75 |
return formatted_output, image_output
|
76 |
|
77 |
def masking(text):
|
|
|
153 |
with gr.Row():
|
154 |
with gr.Column():
|
155 |
species = gr.Textbox(lines=2, label="Species", placeholder="Enter a list of comma-separated binomial names here.")
|
|
|
|
|
156 |
with gr.Column():
|
157 |
text_output_1 = gr.Textbox()
|
158 |
text_output_2 = gr.Image()
|
159 |
text_button = gr.Button("Classify")
|
160 |
gr.Markdown("""<h5 style="text-align: center;">An example of input</h5>""")
|
161 |
+
gr.Examples([["sparganium erectum, calystegia sepium, persicaria amphibia"]], [species], [text_output_1, text_output_2], classification, True)
|
162 |
|
163 |
with gr.Tab("Missing species finding"):
|
164 |
gr.Markdown("""<h3 style="text-align: center;">Finding the missing species!</h3>""")
|