CesarLeblanc commited on
Commit
f80db47
1 Parent(s): f4479ea

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +25 -7
app.py CHANGED
@@ -5,7 +5,7 @@ from bs4 import BeautifulSoup
5
  import random
6
 
7
  classification_model = pipeline("text-classification", model="plantbert_text_classification_model", tokenizer="plantbert_text_classification_model")
8
- mask_model = pipeline("fill-mask", model="plantbert_fill_mask_model", tokenizer="plantbert_fill_mask_model")
9
 
10
  def return_text(habitat_label, habitat_score, confidence):
11
  if habitat_score*100 > confidence:
@@ -90,8 +90,14 @@ def masking(text):
90
 
91
  # Case for the first position
92
  masked_text = "[MASK], " + ', '.join(text.split(', '))
93
- prediction = mask_model(masked_text)[0]
94
- species = prediction['token_str']
 
 
 
 
 
 
95
  score = prediction['score']
96
  sentence = prediction['sequence']
97
 
@@ -104,8 +110,14 @@ def masking(text):
104
  # Loop through each position in the middle of the sentence
105
  for i in range(1, len(text.split(', '))):
106
  masked_text = ', '.join(text.split(', ')[:i]) + ', [MASK], ' + ', '.join(text.split(', ')[i:])
107
- prediction = mask_model(masked_text)[0]
108
- species = prediction['token_str']
 
 
 
 
 
 
109
  score = prediction['score']
110
  sentence = prediction['sequence']
111
 
@@ -118,8 +130,14 @@ def masking(text):
118
 
119
  # Case for the last position
120
  masked_text = ', '.join(text.split(', ')) + ', [MASK]'
121
- prediction = mask_model(masked_text)[0]
122
- species = prediction['token_str']
 
 
 
 
 
 
123
  score = prediction['score']
124
  sentence = prediction['sequence']
125
 
 
5
  import random
6
 
7
  classification_model = pipeline("text-classification", model="plantbert_text_classification_model", tokenizer="plantbert_text_classification_model")
8
+ mask_model = pipeline("fill-mask", model="plantbert_fill_mask_model", tokenizer="plantbert_fill_mask_model", top_k=14189)
9
 
10
  def return_text(habitat_label, habitat_score, confidence):
11
  if habitat_score*100 > confidence:
 
90
 
91
  # Case for the first position
92
  masked_text = "[MASK], " + ', '.join(text.split(', '))
93
+ i = 0
94
+ while True:
95
+ prediction = mask_model(masked_text)[i]
96
+ species = prediction['token_str']
97
+ if species in text.split(', '):
98
+ i+=1
99
+ else:
100
+ break
101
  score = prediction['score']
102
  sentence = prediction['sequence']
103
 
 
110
  # Loop through each position in the middle of the sentence
111
  for i in range(1, len(text.split(', '))):
112
  masked_text = ', '.join(text.split(', ')[:i]) + ', [MASK], ' + ', '.join(text.split(', ')[i:])
113
+ i = 0
114
+ while True:
115
+ prediction = mask_model(masked_text)[i]
116
+ species = prediction['token_str']
117
+ if species in text.split(', '):
118
+ i+=1
119
+ else:
120
+ break
121
  score = prediction['score']
122
  sentence = prediction['sequence']
123
 
 
130
 
131
  # Case for the last position
132
  masked_text = ', '.join(text.split(', ')) + ', [MASK]'
133
+ i = 0
134
+ while True:
135
+ prediction = mask_model(masked_text)[i]
136
+ species = prediction['token_str']
137
+ if species in text.split(', '):
138
+ i+=1
139
+ else:
140
+ break
141
  score = prediction['score']
142
  sentence = prediction['sequence']
143