import gradio as gr from transformers import pipeline from datasets import load_dataset import requests from bs4 import BeautifulSoup def return_model(task): if task == 'classification': model = pipeline("text-classification", model="CesarLeblanc/test_model") else: model = pipeline("fill-mask", model="CesarLeblanc/fill_mask_model") return model def return_dataset(): dataset = load_dataset("CesarLeblanc/text_classification_dataset") return dataset def return_text(habitat_label, habitat_score, confidence): if habitat_score*100 > confidence: text = f"This vegetation plot belongs to the habitat {habitat_label} with the probability {habitat_score*100:.2f}%." else: text = f"We can't assign an habitat to this vegetation plot with a confidence of at least {confidence}%." return text def return_habitat_image(habitat_label, habitat_score, confidence): floraveg_url = f"https://floraveg.eu/habitat/overview/{habitat_label}" response = requests.get(floraveg_url) if response.status_code == 200: soup = BeautifulSoup(response.text, 'html.parser') img_tag = soup.find('img', src=lambda x: x and x.startswith("https://files.ibot.cas.cz/cevs/images/syntaxa/thumbs/")) if img_tag: image_url = img_tag['src'] else: image_url = "https://www.salonlfc.com/wp-content/uploads/2018/01/image-not-found-scaled-1150x647.png" else: image_url = "https://www.salonlfc.com/wp-content/uploads/2018/01/image-not-found-scaled-1150x647.png" if habitat_score*100 < confidence: image_url = "https://www.salonlfc.com/wp-content/uploads/2018/01/image-not-found-scaled-1150x647.png" image = gr.Image(value=image_url) return image def return_species_image(species): species = species[0].capitalize() + species[1:] floraveg_url = f"https://floraveg.eu/taxon/overview/{species}" response = requests.get(floraveg_url) if response.status_code == 200: soup = BeautifulSoup(response.text, 'html.parser') img_tag = soup.find('img', src=lambda x: x and x.startswith("https://files.ibot.cas.cz/cevs/images/taxa/large/")) if img_tag: image_url = img_tag['src'] else: image_url = "https://www.salonlfc.com/wp-content/uploads/2018/01/image-not-found-scaled-1150x647.png" else: image_url = "https://www.salonlfc.com/wp-content/uploads/2018/01/image-not-found-scaled-1150x647.png" image = gr.Image(value=image_url) return image def classification(text, typology, confidence, task): model = return_model(task) dataset = return_dataset() result = model(text) habitat_label = result[0]['label'] habitat_label = dataset['train'].features['label'].names[int(habitat_label.split('_')[1])] habitat_score = result[0]['score'] formatted_output = return_text(habitat_label, habitat_score, confidence) image_output = return_habitat_image(habitat_label, habitat_score, confidence) return formatted_output, image_output def masking(text, task): model = return_model(task) masked_text = text + ', [MASK] [MASK]' pred = model(masked_text, top_k=1) new_species = [pred[i][0]['token_str'] for i in range(len(pred))] new_species = ' '.join(new_species) text = text + ', ' + new_species image = return_species_image(new_species) return text, image def plantbert(text, typology, confidence, task): if task == "classification": formatted_output, image_output = classification(text, typology, confidence, task) else: formatted_output, image_output = masking(text, task) return formatted_output, image_output inputs=[ gr.Textbox(lines=2, label="Species", placeholder="Enter a list of comma-separated binomial names here."), gr.Dropdown(["EUNIS"], value="EUNIS", label="Typology", info="Will add more typologies later!"), gr.Slider(0, 100, value=90, label="Confidence", info="Choose the level of confidence for the prediction."), gr.Radio(["classification", "masking"], value="classification", label="Task", info="Which task to choose?") ] outputs=[ gr.Textbox(lines=2, label="Vegetation Plot Classification Result"), "image" ] title="Pl@ntBERT" description="Vegetation Plot Classification: enter the species found in a vegetation plot and see its EUNIS habitat!" examples=[ ["sparganium erectum, calystegia sepium, persicaria amphibia", "EUNIS", 90, "classification"], ["vaccinium myrtillus, dryopteris dilatata, molinia caerulea", "EUNIS", 90, "masking"] ] io = gr.Interface(fn=plantbert, inputs=inputs, outputs=outputs, title=title, description=description, examples=examples) io.launch()