Spaces:
Runtime error
Runtime error
File size: 6,266 Bytes
49f816b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
# Copyright (c) 2022 Huawei Technologies Co., Ltd.
# Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
#
# The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This repository was forked from https://github.com/openai/guided-diffusion, which is under the MIT license
def get_schedule(t_T, t_0, n_sample, n_steplength, debug=0):
if n_steplength > 1:
if not n_sample > 1:
raise RuntimeError('n_steplength has no effect if n_sample=1')
t = t_T
times = [t]
while t >= 0:
t = t - 1
times.append(t)
n_steplength_cur = min(n_steplength, t_T - t)
for _ in range(n_sample - 1):
for _ in range(n_steplength_cur):
t = t + 1
times.append(t)
for _ in range(n_steplength_cur):
t = t - 1
times.append(t)
_check_times(times, t_0, t_T)
if debug == 2:
for x in [list(range(0, 50)), list(range(-1, -50, -1))]:
_plot_times(x=x, times=[times[i] for i in x])
return times
def _check_times(times, t_0, t_T):
# Check end
assert times[0] > times[1], (times[0], times[1])
# Check beginning
assert times[-1] == -1, times[-1]
# Steplength = 1
for t_last, t_cur in zip(times[:-1], times[1:]):
assert abs(t_last - t_cur) == 1, (t_last, t_cur)
# Value range
for t in times:
assert t >= t_0, (t, t_0)
assert t <= t_T, (t, t_T)
def _plot_times(x, times):
import matplotlib.pyplot as plt
plt.plot(x, times)
plt.show()
def get_schedule_jump(t_T, n_sample, jump_length, jump_n_sample,
jump2_length=1, jump2_n_sample=1,
jump3_length=1, jump3_n_sample=1,
start_resampling=100000000):
jumps = {}
for j in range(0, t_T - jump_length, jump_length):
jumps[j] = jump_n_sample - 1
jumps2 = {}
for j in range(0, t_T - jump2_length, jump2_length):
jumps2[j] = jump2_n_sample - 1
jumps3 = {}
for j in range(0, t_T - jump3_length, jump3_length):
jumps3[j] = jump3_n_sample - 1
t = t_T
ts = []
while t >= 1:
t = t-1
ts.append(t)
if (
t + 1 < t_T - 1 and
t <= start_resampling
):
for _ in range(n_sample - 1):
t = t + 1
ts.append(t)
if t >= 0:
t = t - 1
ts.append(t)
if (
jumps3.get(t, 0) > 0 and
t <= start_resampling - jump3_length
):
jumps3[t] = jumps3[t] - 1
for _ in range(jump3_length):
t = t + 1
ts.append(t)
if (
jumps2.get(t, 0) > 0 and
t <= start_resampling - jump2_length
):
jumps2[t] = jumps2[t] - 1
for _ in range(jump2_length):
t = t + 1
ts.append(t)
jumps3 = {}
for j in range(0, t_T - jump3_length, jump3_length):
jumps3[j] = jump3_n_sample - 1
if (
jumps.get(t, 0) > 0 and
t <= start_resampling - jump_length
):
jumps[t] = jumps[t] - 1
for _ in range(jump_length):
t = t + 1
ts.append(t)
jumps2 = {}
for j in range(0, t_T - jump2_length, jump2_length):
jumps2[j] = jump2_n_sample - 1
jumps3 = {}
for j in range(0, t_T - jump3_length, jump3_length):
jumps3[j] = jump3_n_sample - 1
ts.append(-1)
_check_times(ts, -1, t_T)
return ts
def get_schedule_jump_paper():
t_T = 250
jump_length = 10
jump_n_sample = 10
jumps = {}
for j in range(0, t_T - jump_length, jump_length):
jumps[j] = jump_n_sample - 1
t = t_T
ts = []
while t >= 1:
t = t-1
ts.append(t)
if jumps.get(t, 0) > 0:
jumps[t] = jumps[t] - 1
for _ in range(jump_length):
t = t + 1
ts.append(t)
ts.append(-1)
_check_times(ts, -1, t_T)
return ts
def get_schedule_jump_test(to_supplement=False):
ts = get_schedule_jump(t_T=250, n_sample=1,
jump_length=10, jump_n_sample=10,
jump2_length=1, jump2_n_sample=1,
jump3_length=1, jump3_n_sample=1,
start_resampling=250)
import matplotlib.pyplot as plt
SMALL_SIZE = 8*3
MEDIUM_SIZE = 10*3
BIGGER_SIZE = 12*3
plt.rc('font', size=SMALL_SIZE) # controls default text sizes
plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title
plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels
plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels
plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels
plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize
plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title
plt.plot(ts)
fig = plt.gcf()
fig.set_size_inches(20, 10)
ax = plt.gca()
ax.set_xlabel('Number of Transitions')
ax.set_ylabel('Diffusion time $t$')
fig.tight_layout()
if to_supplement:
out_path = "/cluster/home/alugmayr/gdiff/paper/supplement/figures/jump_sched.pdf"
plt.savefig(out_path)
out_path = "./schedule.png"
plt.savefig(out_path)
print(out_path)
def main():
get_schedule_jump_test()
if __name__ == "__main__":
main() |