File size: 6,266 Bytes
49f816b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# Copyright (c) 2022 Huawei Technologies Co., Ltd.
# Licensed under CC BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike 4.0 International) (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
#
# The code is released for academic research use only. For commercial use, please contact Huawei Technologies Co., Ltd.
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This repository was forked from https://github.com/openai/guided-diffusion, which is under the MIT license

def get_schedule(t_T, t_0, n_sample, n_steplength, debug=0):
    if n_steplength > 1:
        if not n_sample > 1:
            raise RuntimeError('n_steplength has no effect if n_sample=1')

    t = t_T
    times = [t]
    while t >= 0:
        t = t - 1
        times.append(t)
        n_steplength_cur = min(n_steplength, t_T - t)

        for _ in range(n_sample - 1):

            for _ in range(n_steplength_cur):
                t = t + 1
                times.append(t)
            for _ in range(n_steplength_cur):
                t = t - 1
                times.append(t)

    _check_times(times, t_0, t_T)

    if debug == 2:
        for x in [list(range(0, 50)), list(range(-1, -50, -1))]:
            _plot_times(x=x, times=[times[i] for i in x])

    return times


def _check_times(times, t_0, t_T):
    # Check end
    assert times[0] > times[1], (times[0], times[1])

    # Check beginning
    assert times[-1] == -1, times[-1]

    # Steplength = 1
    for t_last, t_cur in zip(times[:-1], times[1:]):
        assert abs(t_last - t_cur) == 1, (t_last, t_cur)

    # Value range
    for t in times:
        assert t >= t_0, (t, t_0)
        assert t <= t_T, (t, t_T)


def _plot_times(x, times):
    import matplotlib.pyplot as plt
    plt.plot(x, times)
    plt.show()


def get_schedule_jump(t_T, n_sample, jump_length, jump_n_sample,
                      jump2_length=1, jump2_n_sample=1,
                      jump3_length=1, jump3_n_sample=1,
                      start_resampling=100000000):

    jumps = {}
    for j in range(0, t_T - jump_length, jump_length):
        jumps[j] = jump_n_sample - 1

    jumps2 = {}
    for j in range(0, t_T - jump2_length, jump2_length):
        jumps2[j] = jump2_n_sample - 1

    jumps3 = {}
    for j in range(0, t_T - jump3_length, jump3_length):
        jumps3[j] = jump3_n_sample - 1

    t = t_T
    ts = []

    while t >= 1:
        t = t-1
        ts.append(t)

        if (
            t + 1 < t_T - 1 and
            t <= start_resampling
        ):
            for _ in range(n_sample - 1):
                t = t + 1
                ts.append(t)

                if t >= 0:
                    t = t - 1
                    ts.append(t)

        if (
            jumps3.get(t, 0) > 0 and
            t <= start_resampling - jump3_length
        ):
            jumps3[t] = jumps3[t] - 1
            for _ in range(jump3_length):
                t = t + 1
                ts.append(t)

        if (
            jumps2.get(t, 0) > 0 and
            t <= start_resampling - jump2_length
        ):
            jumps2[t] = jumps2[t] - 1
            for _ in range(jump2_length):
                t = t + 1
                ts.append(t)
            jumps3 = {}
            for j in range(0, t_T - jump3_length, jump3_length):
                jumps3[j] = jump3_n_sample - 1

        if (
            jumps.get(t, 0) > 0 and
            t <= start_resampling - jump_length
        ):
            jumps[t] = jumps[t] - 1
            for _ in range(jump_length):
                t = t + 1
                ts.append(t)
            jumps2 = {}
            for j in range(0, t_T - jump2_length, jump2_length):
                jumps2[j] = jump2_n_sample - 1

            jumps3 = {}
            for j in range(0, t_T - jump3_length, jump3_length):
                jumps3[j] = jump3_n_sample - 1

    ts.append(-1)

    _check_times(ts, -1, t_T)

    return ts


def get_schedule_jump_paper():
    t_T = 250
    jump_length = 10
    jump_n_sample = 10

    jumps = {}
    for j in range(0, t_T - jump_length, jump_length):
        jumps[j] = jump_n_sample - 1

    t = t_T
    ts = []

    while t >= 1:
        t = t-1
        ts.append(t)

        if jumps.get(t, 0) > 0:
            jumps[t] = jumps[t] - 1
            for _ in range(jump_length):
                t = t + 1
                ts.append(t)

    ts.append(-1)

    _check_times(ts, -1, t_T)

    return ts


def get_schedule_jump_test(to_supplement=False):
    ts = get_schedule_jump(t_T=250, n_sample=1,
                           jump_length=10, jump_n_sample=10,
                           jump2_length=1, jump2_n_sample=1,
                           jump3_length=1, jump3_n_sample=1,
                           start_resampling=250)

    import matplotlib.pyplot as plt
    SMALL_SIZE = 8*3
    MEDIUM_SIZE = 10*3
    BIGGER_SIZE = 12*3

    plt.rc('font', size=SMALL_SIZE)          # controls default text sizes
    plt.rc('axes', titlesize=SMALL_SIZE)     # fontsize of the axes title
    plt.rc('axes', labelsize=MEDIUM_SIZE)    # fontsize of the x and y labels
    plt.rc('xtick', labelsize=SMALL_SIZE)    # fontsize of the tick labels
    plt.rc('ytick', labelsize=SMALL_SIZE)    # fontsize of the tick labels
    plt.rc('legend', fontsize=SMALL_SIZE)    # legend fontsize
    plt.rc('figure', titlesize=BIGGER_SIZE)  # fontsize of the figure title

    plt.plot(ts)

    fig = plt.gcf()
    fig.set_size_inches(20, 10)

    ax = plt.gca()
    ax.set_xlabel('Number of Transitions')
    ax.set_ylabel('Diffusion time $t$')

    fig.tight_layout()

    if to_supplement:
        out_path = "/cluster/home/alugmayr/gdiff/paper/supplement/figures/jump_sched.pdf"
        plt.savefig(out_path)

    out_path = "./schedule.png"
    plt.savefig(out_path)
    print(out_path)


def main():
    get_schedule_jump_test()


if __name__ == "__main__":
    main()