Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,711 Bytes
49f816b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 |
import io
import cv2
import numpy as np
from PIL import Image
from skimage.transform import resize
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
def draw_hand3d(keypoints):
# Define the connections between keypoints as tuples (start, end)
bones = [
((0, 1), 'red'), ((1, 2), 'green'), ((2, 3), 'blue'), ((3, 4), 'purple'),
((0, 5), 'orange'), ((5, 6), 'pink'), ((6, 7), 'brown'), ((7, 8), 'cyan'),
((0, 9), 'yellow'), ((9, 10), 'magenta'), ((10, 11), 'lime'), ((11, 12), 'blueviolet'),
((0, 13), 'olive'), ((13, 14), 'teal'), ((14, 15), 'crimson'), ((15, 16), 'cornsilk'),
((0, 17), 'aqua'), ((17, 18), 'silver'), ((18, 19), 'maroon'), ((19, 20), 'fuchsia')
]
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
# Plot the bones
for bone, color in bones:
start_point = keypoints[bone[0], :]
end_point = keypoints[bone[1], :]
ax.plot([start_point[0], end_point[0]],
[start_point[1], end_point[1]],
[start_point[2], end_point[2]], color=color)
ax.scatter(keypoints[:, 0], keypoints[:, 1], keypoints[:, 2], color='gray', s=15)
# Set the aspect ratio to be equal
max_range = np.array([keypoints[:,0].max()-keypoints[:,0].min(),
keypoints[:,1].max()-keypoints[:,1].min(),
keypoints[:,2].max()-keypoints[:,2].min()]).max() / 2.0
mid_x = (keypoints[:,0].max()+keypoints[:,0].min()) * 0.5
mid_y = (keypoints[:,1].max()+keypoints[:,1].min()) * 0.5
mid_z = (keypoints[:,2].max()+keypoints[:,2].min()) * 0.5
ax.set_xlim(mid_x - max_range, mid_x + max_range)
ax.set_ylim(mid_y - max_range, mid_y + max_range)
ax.set_zlim(mid_z - max_range, mid_z + max_range)
# Set labels for axes
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
plt.show()
def visualize_hand(joints, img):
# Define the connections between joints for drawing lines and their corresponding colors
connections = [
((0, 1), 'red'), ((1, 2), 'green'), ((2, 3), 'blue'), ((3, 4), 'purple'),
((0, 5), 'orange'), ((5, 6), 'pink'), ((6, 7), 'brown'), ((7, 8), 'cyan'),
((0, 9), 'yellow'), ((9, 10), 'magenta'), ((10, 11), 'lime'), ((11, 12), 'indigo'),
((0, 13), 'olive'), ((13, 14), 'teal'), ((14, 15), 'navy'), ((15, 16), 'gray'),
((0, 17), 'lavender'), ((17, 18), 'silver'), ((18, 19), 'maroon'), ((19, 20), 'fuchsia')
]
H, W, C = img.shape
# Create a figure and axis
plt.figure()
ax = plt.gca()
# Plot joints as points
ax.imshow(img)
ax.scatter(joints[:, 0], joints[:, 1], color='white', s=15)
# Plot lines connecting joints with different colors for each bone
for connection, color in connections:
joint1 = joints[connection[0]]
joint2 = joints[connection[1]]
ax.plot([joint1[0], joint2[0]], [joint1[1], joint2[1]], color=color)
ax.set_xlim([0, W])
ax.set_ylim([0, H])
ax.grid(False)
ax.set_axis_off()
ax.invert_yaxis()
plt.subplots_adjust(wspace=0.01)
plt.show()
def draw_hand_skeleton(joints, image_size, thickness=5):
# Create a blank white image
image = np.zeros((image_size[0], image_size[1]), dtype=np.uint8)
# Define the connections between joints
connections = [
(0, 1),
(1, 2),
(2, 3),
(3, 4),
(0, 5),
(5, 6),
(6, 7),
(7, 8),
(0, 9),
(9, 10),
(10, 11),
(11, 12),
(0, 13),
(13, 14),
(14, 15),
(15, 16),
(0, 17),
(17, 18),
(18, 19),
(19, 20),
]
# Draw lines connecting joints
for connection in connections:
joint1 = joints[connection[0]].astype("int")
joint2 = joints[connection[1]].astype("int")
cv2.line(image, tuple(joint1), tuple(joint2), color=1, thickness=thickness)
return image
def draw_hand(joints, img):
# Define the connections between joints for drawing lines and their corresponding colors
connections = [
((0, 1), 'red'), ((1, 2), 'green'), ((2, 3), 'blue'), ((3, 4), 'purple'),
((0, 5), 'orange'), ((5, 6), 'pink'), ((6, 7), 'brown'), ((7, 8), 'cyan'),
((0, 9), 'yellow'), ((9, 10), 'magenta'), ((10, 11), 'lime'), ((11, 12), 'indigo'),
((0, 13), 'olive'), ((13, 14), 'teal'), ((14, 15), 'navy'), ((15, 16), 'gray'),
((0, 17), 'lavender'), ((17, 18), 'silver'), ((18, 19), 'maroon'), ((19, 20), 'fuchsia')
]
H, W, C = img.shape
# Create a figure and axis with the same size as the input image
fig, ax = plt.subplots(figsize=(W / 100, H / 100), dpi=100)
# Plot joints as points
ax.imshow(img)
ax.scatter(joints[:, 0], joints[:, 1], color='white', s=15)
# Plot lines connecting joints with different colors for each bone
for connection, color in connections:
joint1 = joints[connection[0]]
joint2 = joints[connection[1]]
ax.plot([joint1[0], joint2[0]], [joint1[1], joint2[1]], color=color)
ax.set_xlim([0, W])
ax.set_ylim([0, H])
ax.grid(False)
ax.set_axis_off()
ax.invert_yaxis()
plt.subplots_adjust(left=0, right=1, top=1, bottom=0, wspace=0.01, hspace=0.01)
# Save the plot to a buffer
buf = io.BytesIO()
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
plt.close(fig) # Close the figure to free memory
# Load the image from the buffer into a PIL image and then into a numpy array
buf.seek(0)
img_arr = np.array(Image.open(buf))
return img_arr[..., :3]
def keypoint_heatmap(pts, size, var=1.0):
H, W = size
x = np.linspace(0, W - 1, W)
y = np.linspace(0, H - 1, H)
xv, yv = np.meshgrid(x, y)
grid = np.stack((xv, yv), axis=-1)
# Expanding dims for broadcasting subtraction between pts and every grid position
modes_exp = np.expand_dims(np.expand_dims(pts, axis=1), axis=1)
# Calculating squared difference
diff = grid - modes_exp
normal = np.exp(-np.sum(diff**2, axis=-1) / (2 * var)) / (
2.0 * np.pi * var
)
return normal
def check_keypoints_validity(keypoints, image_size):
H, W = image_size
# Check if x coordinates are valid: 0 < x < W
valid_x = (keypoints[:, 0] > 0) & (keypoints[:, 0] < W)
# Check if y coordinates are valid: 0 < y < H
valid_y = (keypoints[:, 1] > 0) & (keypoints[:, 1] < H)
# Combine the validity checks for both x and y
valid_keypoints = valid_x & valid_y
# Convert boolean array to integer (1 for True, 0 for False)
return valid_keypoints.astype(int)
def find_bounding_box(mask, margin=30):
"""Find the bounding box of a binary mask. Return None if the mask is empty."""
rows = np.any(mask, axis=1)
cols = np.any(mask, axis=0)
if not rows.any() or not cols.any(): # Mask is empty
return None
ymin, ymax = np.where(rows)[0][[0, -1]]
xmin, xmax = np.where(cols)[0][[0, -1]]
xmin -= margin
xmax += margin
ymin -= margin
ymax += margin
return xmin, ymin, xmax, ymax
def adjust_box_to_image(xmin, ymin, xmax, ymax, image_width, image_height):
"""Adjust the bounding box to fit within the image boundaries."""
box_width = xmax - xmin
box_height = ymax - ymin
# Determine the side length of the square (the larger of the two dimensions)
side_length = max(box_width, box_height)
# Adjust to maintain a square by expanding or contracting sides
xmin = max(0, xmin - (side_length - box_width) // 2)
xmax = xmin + side_length
ymin = max(0, ymin - (side_length - box_height) // 2)
ymax = ymin + side_length
# Ensure the box is still within the image boundaries after adjustments
if xmax > image_width:
shift = xmax - image_width
xmin -= shift
xmax -= shift
if ymax > image_height:
shift = ymax - image_height
ymin -= shift
ymax -= shift
# After shifting, double-check if any side is out-of-bounds and adjust if necessary
xmin = max(0, xmin)
ymin = max(0, ymin)
xmax = min(image_width, xmax)
ymax = min(image_height, ymax)
# It's possible the adjustments made the box not square (due to boundary constraints),
# so we might need to slightly adjust the size to keep it as square as possible
# This could involve a final adjustment based on the specific requirements,
# like reducing the side length to fit or deciding which dimension to prioritize.
return xmin, ymin, xmax, ymax
def scale_keypoint(keypoint, original_size, target_size):
"""Scale a keypoint based on the resizing of the image."""
keypoint_copy = keypoint.copy()
keypoint_copy[:, 0] *= target_size[0] / original_size[0]
keypoint_copy[:, 1] *= target_size[1] / original_size[1]
return keypoint_copy
def crop_and_adjust_image_and_annotations(image, hand_mask, obj_mask, hand_pose, intrinsics, target_size=(512, 512)):
# Find bounding boxes for each mask, handling potentially empty masks
xmin, ymin, xmax, ymax = find_bounding_box(hand_mask) if np.any(hand_mask) else None
# Adjust bounding box to fit within the image and be square
xmin, ymin, xmax, ymax = adjust_box_to_image(xmin, ymin, xmax, ymax, image.shape[1], image.shape[0])
# Crop the image and mask
# masked_hand_image = (image * np.maximum(hand_mask, obj_mask)[..., None].astype(float)).astype(np.uint8)
cropped_hand_image = image[ymin:ymax, xmin:xmax]
cropped_hand_mask = hand_mask[ymin:ymax, xmin:xmax].astype(np.uint8)
cropped_obj_mask = obj_mask[ymin:ymax, xmin:xmax].astype(np.uint8)
# Resize the image
resized_image = resize(cropped_hand_image, target_size, anti_aliasing=True)
resized_hand_mask = cv2.resize(cropped_hand_mask, dsize=target_size, interpolation=cv2.INTER_NEAREST)
resized_obj_mask = cv2.resize(cropped_obj_mask, dsize=target_size, interpolation=cv2.INTER_NEAREST)
# adjust and scale 2d keypoints
for hand_type, kps2d in hand_pose.items():
kps2d[:, 0] -= xmin
kps2d[:, 1] -= ymin
hand_pose[hand_type] = scale_keypoint(kps2d, (xmax - xmin, ymax - ymin), target_size)
# adjust instrinsics
resized_intrinsics= np.array(intrinsics, copy=True)
resized_intrinsics[0, 2] -= xmin
resized_intrinsics[1, 2] -= ymin
resized_intrinsics[0, :] *= target_size[0] / (xmax - xmin)
resized_intrinsics[1, :] *= target_size[1] / (ymax - ymin)
return (resized_image, resized_hand_mask, resized_obj_mask, hand_pose, resized_intrinsics)
|