File size: 10,711 Bytes
49f816b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import io 
import cv2
import numpy as np
from PIL import Image
from skimage.transform import resize
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D


def draw_hand3d(keypoints):
    # Define the connections between keypoints as tuples (start, end)
    bones = [
        ((0, 1), 'red'), ((1, 2), 'green'), ((2, 3), 'blue'), ((3, 4), 'purple'),
        ((0, 5), 'orange'), ((5, 6), 'pink'), ((6, 7), 'brown'), ((7, 8), 'cyan'),
        ((0, 9), 'yellow'), ((9, 10), 'magenta'), ((10, 11), 'lime'), ((11, 12), 'blueviolet'),
        ((0, 13), 'olive'), ((13, 14), 'teal'), ((14, 15), 'crimson'), ((15, 16), 'cornsilk'),
        ((0, 17), 'aqua'), ((17, 18), 'silver'), ((18, 19), 'maroon'), ((19, 20), 'fuchsia')
    ]

    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')

    # Plot the bones
    for bone, color in bones:
        start_point = keypoints[bone[0], :]
        end_point = keypoints[bone[1], :]

        ax.plot([start_point[0], end_point[0]], 
                [start_point[1], end_point[1]], 
                [start_point[2], end_point[2]], color=color)
    
    ax.scatter(keypoints[:, 0], keypoints[:, 1], keypoints[:, 2], color='gray', s=15)

    # Set the aspect ratio to be equal
    max_range = np.array([keypoints[:,0].max()-keypoints[:,0].min(), 
                          keypoints[:,1].max()-keypoints[:,1].min(), 
                          keypoints[:,2].max()-keypoints[:,2].min()]).max() / 2.0

    mid_x = (keypoints[:,0].max()+keypoints[:,0].min()) * 0.5
    mid_y = (keypoints[:,1].max()+keypoints[:,1].min()) * 0.5
    mid_z = (keypoints[:,2].max()+keypoints[:,2].min()) * 0.5

    ax.set_xlim(mid_x - max_range, mid_x + max_range)
    ax.set_ylim(mid_y - max_range, mid_y + max_range)
    ax.set_zlim(mid_z - max_range, mid_z + max_range)

    # Set labels for axes
    ax.set_xlabel('X')
    ax.set_ylabel('Y')
    ax.set_zlabel('Z')

    plt.show()


def visualize_hand(joints, img):
# Define the connections between joints for drawing lines and their corresponding colors
    connections = [
        ((0, 1), 'red'), ((1, 2), 'green'), ((2, 3), 'blue'), ((3, 4), 'purple'),
        ((0, 5), 'orange'), ((5, 6), 'pink'), ((6, 7), 'brown'), ((7, 8), 'cyan'),
        ((0, 9), 'yellow'), ((9, 10), 'magenta'), ((10, 11), 'lime'), ((11, 12), 'indigo'),
        ((0, 13), 'olive'), ((13, 14), 'teal'), ((14, 15), 'navy'), ((15, 16), 'gray'),
        ((0, 17), 'lavender'), ((17, 18), 'silver'), ((18, 19), 'maroon'), ((19, 20), 'fuchsia')
    ]
    H, W, C = img.shape
    
    # Create a figure and axis
    plt.figure()
    ax = plt.gca()
    # Plot joints as points
    ax.imshow(img)
    ax.scatter(joints[:, 0], joints[:, 1], color='white', s=15)
    # Plot lines connecting joints with different colors for each bone
    for connection, color in connections:
        joint1 = joints[connection[0]]
        joint2 = joints[connection[1]]
        ax.plot([joint1[0], joint2[0]], [joint1[1], joint2[1]], color=color)

    ax.set_xlim([0, W])
    ax.set_ylim([0, H])
    ax.grid(False)
    ax.set_axis_off()
    ax.invert_yaxis()
    plt.subplots_adjust(wspace=0.01)
    plt.show()
    

def draw_hand_skeleton(joints, image_size, thickness=5):
    # Create a blank white image
    image = np.zeros((image_size[0], image_size[1]), dtype=np.uint8)

    # Define the connections between joints
    connections = [
        (0, 1),
        (1, 2),
        (2, 3),
        (3, 4),
        (0, 5),
        (5, 6),
        (6, 7),
        (7, 8),
        (0, 9),
        (9, 10),
        (10, 11),
        (11, 12),
        (0, 13),
        (13, 14),
        (14, 15),
        (15, 16),
        (0, 17),
        (17, 18),
        (18, 19),
        (19, 20),
    ]

    # Draw lines connecting joints
    for connection in connections:
        joint1 = joints[connection[0]].astype("int")
        joint2 = joints[connection[1]].astype("int")
        cv2.line(image, tuple(joint1), tuple(joint2), color=1, thickness=thickness)

    return image


def draw_hand(joints, img):
    # Define the connections between joints for drawing lines and their corresponding colors
    connections = [
        ((0, 1), 'red'), ((1, 2), 'green'), ((2, 3), 'blue'), ((3, 4), 'purple'),
        ((0, 5), 'orange'), ((5, 6), 'pink'), ((6, 7), 'brown'), ((7, 8), 'cyan'),
        ((0, 9), 'yellow'), ((9, 10), 'magenta'), ((10, 11), 'lime'), ((11, 12), 'indigo'),
        ((0, 13), 'olive'), ((13, 14), 'teal'), ((14, 15), 'navy'), ((15, 16), 'gray'),
        ((0, 17), 'lavender'), ((17, 18), 'silver'), ((18, 19), 'maroon'), ((19, 20), 'fuchsia')
    ]
    H, W, C = img.shape
    
    # Create a figure and axis with the same size as the input image
    fig, ax = plt.subplots(figsize=(W / 100, H / 100), dpi=100)
    # Plot joints as points
    ax.imshow(img)
    ax.scatter(joints[:, 0], joints[:, 1], color='white', s=15)
    # Plot lines connecting joints with different colors for each bone
    for connection, color in connections:
        joint1 = joints[connection[0]]
        joint2 = joints[connection[1]]
        ax.plot([joint1[0], joint2[0]], [joint1[1], joint2[1]], color=color)

    ax.set_xlim([0, W])
    ax.set_ylim([0, H])
    ax.grid(False)
    ax.set_axis_off()
    ax.invert_yaxis()
    plt.subplots_adjust(left=0, right=1, top=1, bottom=0, wspace=0.01, hspace=0.01)

    # Save the plot to a buffer
    buf = io.BytesIO()
    plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
    plt.close(fig)  # Close the figure to free memory

    # Load the image from the buffer into a PIL image and then into a numpy array
    buf.seek(0)
    img_arr = np.array(Image.open(buf))
    
    return img_arr[..., :3]


def keypoint_heatmap(pts, size, var=1.0):
    H, W = size
    x = np.linspace(0, W - 1, W)
    y = np.linspace(0, H - 1, H)
    xv, yv = np.meshgrid(x, y)
    grid = np.stack((xv, yv), axis=-1)
    
    # Expanding dims for broadcasting subtraction between pts and every grid position
    modes_exp = np.expand_dims(np.expand_dims(pts, axis=1), axis=1)
    
    # Calculating squared difference
    diff = grid - modes_exp
    normal = np.exp(-np.sum(diff**2, axis=-1) / (2 * var)) / (
        2.0 * np.pi * var
    )
    return normal


def check_keypoints_validity(keypoints, image_size):
    H, W = image_size
    # Check if x coordinates are valid: 0 < x < W
    valid_x = (keypoints[:, 0] > 0) & (keypoints[:, 0] < W)
    
    # Check if y coordinates are valid: 0 < y < H
    valid_y = (keypoints[:, 1] > 0) & (keypoints[:, 1] < H)
    
    # Combine the validity checks for both x and y
    valid_keypoints = valid_x & valid_y
    
    # Convert boolean array to integer (1 for True, 0 for False)
    return valid_keypoints.astype(int)


def find_bounding_box(mask, margin=30):
    """Find the bounding box of a binary mask. Return None if the mask is empty."""
    rows = np.any(mask, axis=1)
    cols = np.any(mask, axis=0)
    if not rows.any() or not cols.any():  # Mask is empty
        return None
    ymin, ymax = np.where(rows)[0][[0, -1]]
    xmin, xmax = np.where(cols)[0][[0, -1]]
    xmin -= margin
    xmax += margin
    ymin -= margin
    ymax += margin
    return xmin, ymin, xmax, ymax


def adjust_box_to_image(xmin, ymin, xmax, ymax, image_width, image_height):
    """Adjust the bounding box to fit within the image boundaries."""
    box_width = xmax - xmin
    box_height = ymax - ymin
    # Determine the side length of the square (the larger of the two dimensions)
    side_length = max(box_width, box_height)
    
    # Adjust to maintain a square by expanding or contracting sides
    xmin = max(0, xmin - (side_length - box_width) // 2)
    xmax = xmin + side_length
    ymin = max(0, ymin - (side_length - box_height) // 2)
    ymax = ymin + side_length
    
    # Ensure the box is still within the image boundaries after adjustments
    if xmax > image_width:
        shift = xmax - image_width
        xmin -= shift
        xmax -= shift
    if ymax > image_height:
        shift = ymax - image_height
        ymin -= shift
        ymax -= shift
    
    # After shifting, double-check if any side is out-of-bounds and adjust if necessary
    xmin = max(0, xmin)
    ymin = max(0, ymin)
    xmax = min(image_width, xmax)
    ymax = min(image_height, ymax)
    
    # It's possible the adjustments made the box not square (due to boundary constraints),
    # so we might need to slightly adjust the size to keep it as square as possible
    # This could involve a final adjustment based on the specific requirements,
    # like reducing the side length to fit or deciding which dimension to prioritize.

    return xmin, ymin, xmax, ymax


def scale_keypoint(keypoint, original_size, target_size):
    """Scale a keypoint based on the resizing of the image."""
    keypoint_copy = keypoint.copy()
    keypoint_copy[:, 0] *= target_size[0] / original_size[0]
    keypoint_copy[:, 1] *= target_size[1] / original_size[1]
    return keypoint_copy


def crop_and_adjust_image_and_annotations(image, hand_mask, obj_mask, hand_pose, intrinsics, target_size=(512, 512)):
    # Find bounding boxes for each mask, handling potentially empty masks
    xmin, ymin, xmax, ymax = find_bounding_box(hand_mask) if np.any(hand_mask) else None

    # Adjust bounding box to fit within the image and be square
    xmin, ymin, xmax, ymax = adjust_box_to_image(xmin, ymin, xmax, ymax, image.shape[1], image.shape[0])
    
    # Crop the image and mask
    # masked_hand_image = (image * np.maximum(hand_mask, obj_mask)[..., None].astype(float)).astype(np.uint8)
    cropped_hand_image = image[ymin:ymax, xmin:xmax]
    cropped_hand_mask = hand_mask[ymin:ymax, xmin:xmax].astype(np.uint8)
    cropped_obj_mask = obj_mask[ymin:ymax, xmin:xmax].astype(np.uint8)  

    # Resize the image
    resized_image = resize(cropped_hand_image, target_size, anti_aliasing=True)
    resized_hand_mask = cv2.resize(cropped_hand_mask, dsize=target_size, interpolation=cv2.INTER_NEAREST)
    resized_obj_mask = cv2.resize(cropped_obj_mask, dsize=target_size, interpolation=cv2.INTER_NEAREST)
    
    # adjust and scale 2d keypoints
    for hand_type, kps2d in hand_pose.items():
        kps2d[:, 0] -= xmin
        kps2d[:, 1] -= ymin
        hand_pose[hand_type] = scale_keypoint(kps2d, (xmax - xmin, ymax - ymin), target_size)
        
    # adjust instrinsics
    resized_intrinsics= np.array(intrinsics, copy=True)
    resized_intrinsics[0, 2] -= xmin
    resized_intrinsics[1, 2] -= ymin
    resized_intrinsics[0, :] *= target_size[0] / (xmax - xmin)
    resized_intrinsics[1, :] *= target_size[1] / (ymax - ymin)
    
    return (resized_image, resized_hand_mask, resized_obj_mask, hand_pose, resized_intrinsics)