Spaces:
Runtime error
Runtime error
instruction renovation; allow manual keypoints at edit hands
Browse files- app_regular_gpu.py +2003 -0
- no_hands.png +3 -0
app_regular_gpu.py
ADDED
@@ -0,0 +1,2003 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from dataclasses import dataclass
|
4 |
+
import gradio as gr
|
5 |
+
import numpy as np
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
import cv2
|
8 |
+
import mediapipe as mp
|
9 |
+
from torchvision.transforms import Compose, Resize, ToTensor, Normalize
|
10 |
+
import vqvae
|
11 |
+
import vit
|
12 |
+
from typing import Literal
|
13 |
+
from diffusion import create_diffusion
|
14 |
+
from utils import scale_keypoint, keypoint_heatmap, check_keypoints_validity
|
15 |
+
from segment_hoi import init_sam
|
16 |
+
from io import BytesIO
|
17 |
+
from PIL import Image
|
18 |
+
import random
|
19 |
+
from copy import deepcopy
|
20 |
+
from typing import Optional
|
21 |
+
import requests
|
22 |
+
from huggingface_hub import hf_hub_download
|
23 |
+
# import spaces
|
24 |
+
|
25 |
+
MAX_N = 6
|
26 |
+
FIX_MAX_N = 6
|
27 |
+
|
28 |
+
placeholder = cv2.cvtColor(cv2.imread("placeholder.png"), cv2.COLOR_BGR2RGB)
|
29 |
+
NEW_MODEL = True
|
30 |
+
MODEL_EPOCH = 6
|
31 |
+
REF_POSE_MASK = True
|
32 |
+
|
33 |
+
def set_seed(seed):
|
34 |
+
seed = int(seed)
|
35 |
+
torch.manual_seed(seed)
|
36 |
+
np.random.seed(seed)
|
37 |
+
torch.cuda.manual_seed_all(seed)
|
38 |
+
random.seed(seed)
|
39 |
+
|
40 |
+
# if torch.cuda.is_available():
|
41 |
+
device = "cuda"
|
42 |
+
# else:
|
43 |
+
# device = "cpu"
|
44 |
+
|
45 |
+
def remove_prefix(text, prefix):
|
46 |
+
if text.startswith(prefix):
|
47 |
+
return text[len(prefix) :]
|
48 |
+
return text
|
49 |
+
|
50 |
+
|
51 |
+
def unnormalize(x):
|
52 |
+
return (((x + 1) / 2) * 255).astype(np.uint8)
|
53 |
+
|
54 |
+
|
55 |
+
def visualize_hand(all_joints, img, side=["right", "left"], n_avail_joints=21):
|
56 |
+
# Define the connections between joints for drawing lines and their corresponding colors
|
57 |
+
connections = [
|
58 |
+
((0, 1), "red"),
|
59 |
+
((1, 2), "green"),
|
60 |
+
((2, 3), "blue"),
|
61 |
+
((3, 4), "purple"),
|
62 |
+
((0, 5), "orange"),
|
63 |
+
((5, 6), "pink"),
|
64 |
+
((6, 7), "brown"),
|
65 |
+
((7, 8), "cyan"),
|
66 |
+
((0, 9), "yellow"),
|
67 |
+
((9, 10), "magenta"),
|
68 |
+
((10, 11), "lime"),
|
69 |
+
((11, 12), "indigo"),
|
70 |
+
((0, 13), "olive"),
|
71 |
+
((13, 14), "teal"),
|
72 |
+
((14, 15), "navy"),
|
73 |
+
((15, 16), "gray"),
|
74 |
+
((0, 17), "lavender"),
|
75 |
+
((17, 18), "silver"),
|
76 |
+
((18, 19), "maroon"),
|
77 |
+
((19, 20), "fuchsia"),
|
78 |
+
]
|
79 |
+
H, W, C = img.shape
|
80 |
+
|
81 |
+
# Create a figure and axis
|
82 |
+
plt.figure()
|
83 |
+
ax = plt.gca()
|
84 |
+
# Plot joints as points
|
85 |
+
ax.imshow(img)
|
86 |
+
start_is = []
|
87 |
+
if "right" in side:
|
88 |
+
start_is.append(0)
|
89 |
+
if "left" in side:
|
90 |
+
start_is.append(21)
|
91 |
+
for start_i in start_is:
|
92 |
+
joints = all_joints[start_i : start_i + n_avail_joints]
|
93 |
+
if len(joints) == 1:
|
94 |
+
ax.scatter(joints[0][0], joints[0][1], color="red", s=10)
|
95 |
+
else:
|
96 |
+
for connection, color in connections[: len(joints) - 1]:
|
97 |
+
joint1 = joints[connection[0]]
|
98 |
+
joint2 = joints[connection[1]]
|
99 |
+
ax.plot([joint1[0], joint2[0]], [joint1[1], joint2[1]], color=color)
|
100 |
+
|
101 |
+
ax.set_xlim([0, W])
|
102 |
+
ax.set_ylim([0, H])
|
103 |
+
ax.grid(False)
|
104 |
+
ax.set_axis_off()
|
105 |
+
ax.invert_yaxis()
|
106 |
+
# plt.subplots_adjust(wspace=0.01)
|
107 |
+
# plt.show()
|
108 |
+
buf = BytesIO()
|
109 |
+
plt.savefig(buf, format="png", bbox_inches="tight", pad_inches=0)
|
110 |
+
plt.close()
|
111 |
+
|
112 |
+
# Convert BytesIO object to numpy array
|
113 |
+
buf.seek(0)
|
114 |
+
img_pil = Image.open(buf)
|
115 |
+
img_pil = img_pil.resize((H, W))
|
116 |
+
numpy_img = np.array(img_pil)
|
117 |
+
|
118 |
+
return numpy_img
|
119 |
+
|
120 |
+
|
121 |
+
def mask_image(image, mask, color=[0, 0, 0], alpha=0.6, transparent=True):
|
122 |
+
"""Overlay mask on image for visualization purpose.
|
123 |
+
Args:
|
124 |
+
image (H, W, 3) or (H, W): input image
|
125 |
+
mask (H, W): mask to be overlaid
|
126 |
+
color: the color of overlaid mask
|
127 |
+
alpha: the transparency of the mask
|
128 |
+
"""
|
129 |
+
out = deepcopy(image)
|
130 |
+
img = deepcopy(image)
|
131 |
+
img[mask == 1] = color
|
132 |
+
if transparent:
|
133 |
+
out = cv2.addWeighted(img, alpha, out, 1 - alpha, 0, out)
|
134 |
+
else:
|
135 |
+
out = img
|
136 |
+
return out
|
137 |
+
|
138 |
+
|
139 |
+
def scale_keypoint(keypoint, original_size, target_size):
|
140 |
+
"""Scale a keypoint based on the resizing of the image."""
|
141 |
+
keypoint_copy = keypoint.copy()
|
142 |
+
keypoint_copy[:, 0] *= target_size[0] / original_size[0]
|
143 |
+
keypoint_copy[:, 1] *= target_size[1] / original_size[1]
|
144 |
+
return keypoint_copy
|
145 |
+
|
146 |
+
|
147 |
+
print("Configure...")
|
148 |
+
|
149 |
+
|
150 |
+
@dataclass
|
151 |
+
class HandDiffOpts:
|
152 |
+
run_name: str = "ViT_256_handmask_heatmap_nvs_b25_lr1e-5"
|
153 |
+
sd_path: str = "/users/kchen157/scratch/weights/SD/sd-v1-4.ckpt"
|
154 |
+
log_dir: str = "/users/kchen157/scratch/log"
|
155 |
+
data_root: str = "/users/kchen157/data/users/kchen157/dataset/handdiff"
|
156 |
+
image_size: tuple = (256, 256)
|
157 |
+
latent_size: tuple = (32, 32)
|
158 |
+
latent_dim: int = 4
|
159 |
+
mask_bg: bool = False
|
160 |
+
kpts_form: str = "heatmap"
|
161 |
+
n_keypoints: int = 42
|
162 |
+
n_mask: int = 1
|
163 |
+
noise_steps: int = 1000
|
164 |
+
test_sampling_steps: int = 250
|
165 |
+
ddim_steps: int = 100
|
166 |
+
ddim_discretize: str = "uniform"
|
167 |
+
ddim_eta: float = 0.0
|
168 |
+
beta_start: float = 8.5e-4
|
169 |
+
beta_end: float = 0.012
|
170 |
+
latent_scaling_factor: float = 0.18215
|
171 |
+
cfg_pose: float = 5.0
|
172 |
+
cfg_appearance: float = 3.5
|
173 |
+
batch_size: int = 25
|
174 |
+
lr: float = 1e-5
|
175 |
+
max_epochs: int = 500
|
176 |
+
log_every_n_steps: int = 100
|
177 |
+
limit_val_batches: int = 1
|
178 |
+
n_gpu: int = 8
|
179 |
+
num_nodes: int = 1
|
180 |
+
precision: str = "16-mixed"
|
181 |
+
profiler: str = "simple"
|
182 |
+
swa_epoch_start: int = 10
|
183 |
+
swa_lrs: float = 1e-3
|
184 |
+
num_workers: int = 10
|
185 |
+
n_val_samples: int = 4
|
186 |
+
|
187 |
+
# load models
|
188 |
+
token = os.getenv("HF_TOKEN")
|
189 |
+
if NEW_MODEL:
|
190 |
+
opts = HandDiffOpts()
|
191 |
+
if MODEL_EPOCH == 7:
|
192 |
+
model_path = './DINO_EMA_11M_b50_lr1e-5_epoch7_step380k.ckpt'
|
193 |
+
elif MODEL_EPOCH == 6:
|
194 |
+
# model_path = "./DINO_EMA_11M_b50_lr1e-5_epoch6_step320k.ckpt"
|
195 |
+
model_path = hf_hub_download(repo_id="Chaerin5/FoundHand-weights", filename="DINO_EMA_11M_b50_lr1e-5_epoch6_step320k.ckpt", token=token)
|
196 |
+
elif MODEL_EPOCH == 4:
|
197 |
+
model_path = "./DINO_EMA_11M_b50_lr1e-5_epoch4_step210k.ckpt"
|
198 |
+
elif MODEL_EPOCH == 10:
|
199 |
+
model_path = "./DINO_EMA_11M_b50_lr1e-5_epoch10_step550k.ckpt"
|
200 |
+
else:
|
201 |
+
raise ValueError(f"new model epoch should be either 6 or 7, got {MODEL_EPOCH}")
|
202 |
+
# vae_path = './vae-ft-mse-840000-ema-pruned.ckpt'
|
203 |
+
vae_path = hf_hub_download(repo_id="Chaerin5/FoundHand-weights", filename="vae-ft-mse-840000-ema-pruned.ckpt", token=token)
|
204 |
+
# sd_path = './sd-v1-4.ckpt'
|
205 |
+
print('Load diffusion model...')
|
206 |
+
diffusion = create_diffusion(str(opts.test_sampling_steps))
|
207 |
+
model = vit.DiT_XL_2(
|
208 |
+
input_size=opts.latent_size[0],
|
209 |
+
latent_dim=opts.latent_dim,
|
210 |
+
in_channels=opts.latent_dim+opts.n_keypoints+opts.n_mask,
|
211 |
+
learn_sigma=True,
|
212 |
+
).to(device)
|
213 |
+
# ckpt_state_dict = torch.load(model_path)['model_state_dict']
|
214 |
+
ckpt_state_dict = torch.load(model_path, map_location='cpu')['ema_state_dict']
|
215 |
+
missing_keys, extra_keys = model.load_state_dict(ckpt_state_dict, strict=False)
|
216 |
+
model = model.to(device)
|
217 |
+
model.eval()
|
218 |
+
print(missing_keys, extra_keys)
|
219 |
+
assert len(missing_keys) == 0
|
220 |
+
vae_state_dict = torch.load(vae_path, map_location='cpu')['state_dict']
|
221 |
+
print(f"vae_state_dict encoder dtype: {vae_state_dict['encoder.conv_in.weight'].dtype}")
|
222 |
+
autoencoder = vqvae.create_model(3, 3, opts.latent_dim).eval().requires_grad_(False)
|
223 |
+
print(f"autoencoder encoder dtype: {next(autoencoder.encoder.parameters()).dtype}")
|
224 |
+
print(f"encoder before load_state_dict parameters min: {min([p.min() for p in autoencoder.encoder.parameters()])}")
|
225 |
+
print(f"encoder before load_state_dict parameters max: {max([p.max() for p in autoencoder.encoder.parameters()])}")
|
226 |
+
missing_keys, extra_keys = autoencoder.load_state_dict(vae_state_dict, strict=False)
|
227 |
+
print(f"encoder after load_state_dict parameters min: {min([p.min() for p in autoencoder.encoder.parameters()])}")
|
228 |
+
print(f"encoder after load_state_dict parameters max: {max([p.max() for p in autoencoder.encoder.parameters()])}")
|
229 |
+
autoencoder = autoencoder.to(device)
|
230 |
+
autoencoder.eval()
|
231 |
+
print(f"encoder after eval() min: {min([p.min() for p in autoencoder.encoder.parameters()])}")
|
232 |
+
print(f"encoder after eval() max: {max([p.max() for p in autoencoder.encoder.parameters()])}")
|
233 |
+
print(f"autoencoder encoder after eval() dtype: {next(autoencoder.encoder.parameters()).dtype}")
|
234 |
+
assert len(missing_keys) == 0
|
235 |
+
# else:
|
236 |
+
# opts = HandDiffOpts()
|
237 |
+
# model_path = './finetune_epoch=5-step=130000.ckpt'
|
238 |
+
# sd_path = './sd-v1-4.ckpt'
|
239 |
+
# print('Load diffusion model...')
|
240 |
+
# diffusion = create_diffusion(str(opts.test_sampling_steps))
|
241 |
+
# model = vit.DiT_XL_2(
|
242 |
+
# input_size=opts.latent_size[0],
|
243 |
+
# latent_dim=opts.latent_dim,
|
244 |
+
# in_channels=opts.latent_dim+opts.n_keypoints+opts.n_mask,
|
245 |
+
# learn_sigma=True,
|
246 |
+
# ).to(device)
|
247 |
+
# ckpt_state_dict = torch.load(model_path)['state_dict']
|
248 |
+
# dit_state_dict = {remove_prefix(k, 'diffusion_backbone.'): v for k, v in ckpt_state_dict.items() if k.startswith('diffusion_backbone')}
|
249 |
+
# vae_state_dict = {remove_prefix(k, 'autoencoder.'): v for k, v in ckpt_state_dict.items() if k.startswith('autoencoder')}
|
250 |
+
# missing_keys, extra_keys = model.load_state_dict(dit_state_dict, strict=False)
|
251 |
+
# model.eval()
|
252 |
+
# assert len(missing_keys) == 0 and len(extra_keys) == 0
|
253 |
+
# autoencoder = vqvae.create_model(3, 3, opts.latent_dim).eval().requires_grad_(False).to(device)
|
254 |
+
# missing_keys, extra_keys = autoencoder.load_state_dict(vae_state_dict, strict=False)
|
255 |
+
# autoencoder.eval()
|
256 |
+
# assert len(missing_keys) == 0 and len(extra_keys) == 0
|
257 |
+
sam_path = hf_hub_download(repo_id="Chaerin5/FoundHand-weights", filename="sam_vit_h_4b8939.pth", token=token)
|
258 |
+
sam_predictor = init_sam(ckpt_path=sam_path, device='cuda')
|
259 |
+
|
260 |
+
|
261 |
+
print("Mediapipe hand detector and SAM ready...")
|
262 |
+
mp_hands = mp.solutions.hands
|
263 |
+
hands = mp_hands.Hands(
|
264 |
+
static_image_mode=True, # Use False if image is part of a video stream
|
265 |
+
max_num_hands=2, # Maximum number of hands to detect
|
266 |
+
min_detection_confidence=0.1,
|
267 |
+
)
|
268 |
+
|
269 |
+
def prepare_ref_anno(ref):
|
270 |
+
if ref is None:
|
271 |
+
return (
|
272 |
+
None,
|
273 |
+
None,
|
274 |
+
None,
|
275 |
+
None,
|
276 |
+
None,
|
277 |
+
)
|
278 |
+
missing_keys, extra_keys = autoencoder.load_state_dict(vae_state_dict, strict=False)
|
279 |
+
|
280 |
+
img = ref["composite"][..., :3]
|
281 |
+
img = cv2.resize(img, opts.image_size, interpolation=cv2.INTER_AREA)
|
282 |
+
keypts = np.zeros((42, 2))
|
283 |
+
# if REF_POSE_MASK:
|
284 |
+
mp_pose = hands.process(img)
|
285 |
+
# detected = np.array([0, 0])
|
286 |
+
# start_idx = 0
|
287 |
+
if mp_pose.multi_hand_landmarks:
|
288 |
+
# handedness is flipped assuming the input image is mirrored in MediaPipe
|
289 |
+
for hand_landmarks, handedness in zip(
|
290 |
+
mp_pose.multi_hand_landmarks, mp_pose.multi_handedness
|
291 |
+
):
|
292 |
+
# actually right hand
|
293 |
+
if handedness.classification[0].label == "Left":
|
294 |
+
start_idx = 0
|
295 |
+
# detected[0] = 1
|
296 |
+
# actually left hand
|
297 |
+
elif handedness.classification[0].label == "Right":
|
298 |
+
start_idx = 21
|
299 |
+
# detected[1] = 1
|
300 |
+
for i, landmark in enumerate(hand_landmarks.landmark):
|
301 |
+
keypts[start_idx + i] = [
|
302 |
+
landmark.x * opts.image_size[1],
|
303 |
+
landmark.y * opts.image_size[0],
|
304 |
+
]
|
305 |
+
|
306 |
+
# sam_predictor.set_image(img)
|
307 |
+
# l = keypts[:21].shape[0]
|
308 |
+
# if keypts[0].sum() != 0 and keypts[21].sum() != 0:
|
309 |
+
# input_point = np.array([keypts[0], keypts[21]])
|
310 |
+
# input_label = np.array([1, 1])
|
311 |
+
# elif keypts[0].sum() != 0:
|
312 |
+
# input_point = np.array(keypts[:1])
|
313 |
+
# input_label = np.array([1])
|
314 |
+
# elif keypts[21].sum() != 0:
|
315 |
+
# input_point = np.array(keypts[21:22])
|
316 |
+
# input_label = np.array([1])
|
317 |
+
# masks, _, _ = sam_predictor.predict(
|
318 |
+
# point_coords=input_point,
|
319 |
+
# point_labels=input_label,
|
320 |
+
# multimask_output=False,
|
321 |
+
# )
|
322 |
+
# hand_mask = masks[0]
|
323 |
+
# masked_img = img * hand_mask[..., None] + 255 * (1 - hand_mask[..., None])
|
324 |
+
# ref_pose = visualize_hand(keypts, masked_img)
|
325 |
+
print(f"keypts.max(): {keypts.max()}, keypts.min(): {keypts.min()}")
|
326 |
+
return img, keypts
|
327 |
+
else:
|
328 |
+
return img, None
|
329 |
+
# raise gr.Error("No hands detected in the reference image.")
|
330 |
+
# else:
|
331 |
+
# hand_mask = np.zeros_like(img[:,:, 0])
|
332 |
+
# ref_pose = np.zeros_like(img)
|
333 |
+
|
334 |
+
def get_ref_anno(img, keypts):
|
335 |
+
if keypts is None:
|
336 |
+
no_hands = cv2.resize(np.array(Image.open("no_hands.png"))[..., :3], (LENGTH, LENGTH))
|
337 |
+
return None, no_hands, None
|
338 |
+
if isinstance(keypts, list):
|
339 |
+
if len(keypts[0]) == 0:
|
340 |
+
keypts[0] = np.zeros((21, 2))
|
341 |
+
elif len(keypts[0]) == 21:
|
342 |
+
keypts[0] = np.array(keypts[0], dtype=np.float32)
|
343 |
+
else:
|
344 |
+
gr.Info("Number of right hand keypoints should be either 0 or 21.")
|
345 |
+
return None, None
|
346 |
+
|
347 |
+
if len(keypts[1]) == 0:
|
348 |
+
keypts[1] = np.zeros((21, 2))
|
349 |
+
elif len(keypts[1]) == 21:
|
350 |
+
keypts[1] = np.array(keypts[1], dtype=np.float32)
|
351 |
+
else:
|
352 |
+
gr.Info("Number of left hand keypoints should be either 0 or 21.")
|
353 |
+
return None, None
|
354 |
+
|
355 |
+
keypts = np.concatenate(keypts, axis=0)
|
356 |
+
# keypts = scale_keypoint(keypts, (LENGTH, LENGTH), opts.image_size)
|
357 |
+
if REF_POSE_MASK:
|
358 |
+
sam_predictor.set_image(img)
|
359 |
+
# l = keypts[:21].shape[0]
|
360 |
+
if keypts[0].sum() != 0 and keypts[21].sum() != 0:
|
361 |
+
input_point = np.array([keypts[0], keypts[21]])
|
362 |
+
input_label = np.array([1, 1])
|
363 |
+
elif keypts[0].sum() != 0:
|
364 |
+
input_point = np.array(keypts[:1])
|
365 |
+
input_label = np.array([1])
|
366 |
+
elif keypts[21].sum() != 0:
|
367 |
+
input_point = np.array(keypts[21:22])
|
368 |
+
input_label = np.array([1])
|
369 |
+
masks, _, _ = sam_predictor.predict(
|
370 |
+
point_coords=input_point,
|
371 |
+
point_labels=input_label,
|
372 |
+
multimask_output=False,
|
373 |
+
)
|
374 |
+
hand_mask = masks[0]
|
375 |
+
masked_img = img * hand_mask[..., None] + 255 * (1 - hand_mask[..., None])
|
376 |
+
ref_pose = visualize_hand(keypts, masked_img)
|
377 |
+
else:
|
378 |
+
hand_mask = np.zeros_like(img[:,:, 0])
|
379 |
+
ref_pose = np.zeros_like(img)
|
380 |
+
def make_ref_cond(
|
381 |
+
img,
|
382 |
+
keypts,
|
383 |
+
hand_mask,
|
384 |
+
device="cuda",
|
385 |
+
target_size=(256, 256),
|
386 |
+
latent_size=(32, 32),
|
387 |
+
):
|
388 |
+
image_transform = Compose(
|
389 |
+
[
|
390 |
+
ToTensor(),
|
391 |
+
Resize(target_size),
|
392 |
+
Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
|
393 |
+
]
|
394 |
+
)
|
395 |
+
image = image_transform(img).to(device)
|
396 |
+
kpts_valid = check_keypoints_validity(keypts, target_size)
|
397 |
+
heatmaps = torch.tensor(
|
398 |
+
keypoint_heatmap(
|
399 |
+
scale_keypoint(keypts, target_size, latent_size), latent_size, var=1.0
|
400 |
+
)
|
401 |
+
* kpts_valid[:, None, None],
|
402 |
+
dtype=torch.float,
|
403 |
+
device=device
|
404 |
+
)[None, ...]
|
405 |
+
mask = torch.tensor(
|
406 |
+
cv2.resize(
|
407 |
+
hand_mask.astype(int),
|
408 |
+
dsize=latent_size,
|
409 |
+
interpolation=cv2.INTER_NEAREST,
|
410 |
+
),
|
411 |
+
dtype=torch.float,
|
412 |
+
device=device,
|
413 |
+
).unsqueeze(0)[None, ...]
|
414 |
+
return image[None, ...], heatmaps, mask
|
415 |
+
|
416 |
+
print(f"img.max(): {img.max()}, img.min(): {img.min()}")
|
417 |
+
image, heatmaps, mask = make_ref_cond(
|
418 |
+
img,
|
419 |
+
keypts,
|
420 |
+
hand_mask,
|
421 |
+
device="cuda",
|
422 |
+
target_size=opts.image_size,
|
423 |
+
latent_size=opts.latent_size,
|
424 |
+
)
|
425 |
+
print(f"image.max(): {image.max()}, image.min(): {image.min()}")
|
426 |
+
print(f"opts.latent_scaling_factor: {opts.latent_scaling_factor}")
|
427 |
+
print(f"autoencoder encoder before operating max: {min([p.min() for p in autoencoder.encoder.parameters()])}")
|
428 |
+
print(f"autoencoder encoder before operating min: {max([p.max() for p in autoencoder.encoder.parameters()])}")
|
429 |
+
print(f"autoencoder encoder before operating dtype: {next(autoencoder.encoder.parameters()).dtype}")
|
430 |
+
latent = opts.latent_scaling_factor * autoencoder.encode(image).sample()
|
431 |
+
print(f"latent.max(): {latent.max()}, latent.min(): {latent.min()}")
|
432 |
+
if not REF_POSE_MASK:
|
433 |
+
heatmaps = torch.zeros_like(heatmaps)
|
434 |
+
mask = torch.zeros_like(mask)
|
435 |
+
print(f"heatmaps.max(): {heatmaps.max()}, heatmaps.min(): {heatmaps.min()}")
|
436 |
+
print(f"mask.max(): {mask.max()}, mask.min(): {mask.min()}")
|
437 |
+
ref_cond = torch.cat([latent, heatmaps, mask], 1)
|
438 |
+
print(f"ref_cond.max(): {ref_cond.max()}, ref_cond.min(): {ref_cond.min()}")
|
439 |
+
|
440 |
+
return img, ref_pose, ref_cond
|
441 |
+
|
442 |
+
def get_target_anno(target):
|
443 |
+
if target is None:
|
444 |
+
return (
|
445 |
+
gr.State.update(value=None),
|
446 |
+
gr.Image.update(value=None),
|
447 |
+
gr.State.update(value=None),
|
448 |
+
gr.State.update(value=None),
|
449 |
+
)
|
450 |
+
pose_img = target["composite"][..., :3]
|
451 |
+
pose_img = cv2.resize(pose_img, opts.image_size, interpolation=cv2.INTER_AREA)
|
452 |
+
# detect keypoints
|
453 |
+
mp_pose = hands.process(pose_img)
|
454 |
+
target_keypts = np.zeros((42, 2))
|
455 |
+
detected = np.array([0, 0])
|
456 |
+
start_idx = 0
|
457 |
+
if mp_pose.multi_hand_landmarks:
|
458 |
+
# handedness is flipped assuming the input image is mirrored in MediaPipe
|
459 |
+
for hand_landmarks, handedness in zip(
|
460 |
+
mp_pose.multi_hand_landmarks, mp_pose.multi_handedness
|
461 |
+
):
|
462 |
+
# actually right hand
|
463 |
+
if handedness.classification[0].label == "Left":
|
464 |
+
start_idx = 0
|
465 |
+
detected[0] = 1
|
466 |
+
# actually left hand
|
467 |
+
elif handedness.classification[0].label == "Right":
|
468 |
+
start_idx = 21
|
469 |
+
detected[1] = 1
|
470 |
+
for i, landmark in enumerate(hand_landmarks.landmark):
|
471 |
+
target_keypts[start_idx + i] = [
|
472 |
+
landmark.x * opts.image_size[1],
|
473 |
+
landmark.y * opts.image_size[0],
|
474 |
+
]
|
475 |
+
|
476 |
+
target_pose = visualize_hand(target_keypts, pose_img)
|
477 |
+
kpts_valid = check_keypoints_validity(target_keypts, opts.image_size)
|
478 |
+
target_heatmaps = torch.tensor(
|
479 |
+
keypoint_heatmap(
|
480 |
+
scale_keypoint(target_keypts, opts.image_size, opts.latent_size),
|
481 |
+
opts.latent_size,
|
482 |
+
var=1.0,
|
483 |
+
)
|
484 |
+
* kpts_valid[:, None, None],
|
485 |
+
dtype=torch.float,
|
486 |
+
# device=device,
|
487 |
+
)[None, ...]
|
488 |
+
target_cond = torch.cat(
|
489 |
+
[target_heatmaps, torch.zeros_like(target_heatmaps)[:, :1]], 1
|
490 |
+
)
|
491 |
+
else:
|
492 |
+
raise gr.Error("No hands detected in the target image.")
|
493 |
+
|
494 |
+
return pose_img, target_pose, target_cond, target_keypts
|
495 |
+
|
496 |
+
|
497 |
+
def get_mask_inpaint(ref):
|
498 |
+
inpaint_mask = np.array(ref["layers"][0])[..., -1]
|
499 |
+
inpaint_mask = cv2.resize(
|
500 |
+
inpaint_mask, opts.image_size, interpolation=cv2.INTER_AREA
|
501 |
+
)
|
502 |
+
inpaint_mask = (inpaint_mask >= 128).astype(np.uint8)
|
503 |
+
return inpaint_mask
|
504 |
+
|
505 |
+
|
506 |
+
def visualize_ref(crop, brush):
|
507 |
+
if crop is None or brush is None:
|
508 |
+
return None
|
509 |
+
inpainted = brush["layers"][0][..., -1]
|
510 |
+
img = crop["background"][..., :3]
|
511 |
+
img = cv2.resize(img, inpainted.shape[::-1], interpolation=cv2.INTER_AREA)
|
512 |
+
mask = inpainted < 128
|
513 |
+
# img = img.astype(np.int32)
|
514 |
+
# img[mask, :] = img[mask, :] - 50
|
515 |
+
# img[np.any(img<0, axis=-1)]=0
|
516 |
+
# img = img.astype(np.uint8)
|
517 |
+
img = mask_image(img, mask)
|
518 |
+
return img
|
519 |
+
|
520 |
+
|
521 |
+
def get_kps(img, keypoints, side: Literal["right", "left"], evt: gr.SelectData):
|
522 |
+
if keypoints is None:
|
523 |
+
keypoints = [[], []]
|
524 |
+
kps = np.zeros((42, 2))
|
525 |
+
if side == "right":
|
526 |
+
if len(keypoints[0]) == 21:
|
527 |
+
gr.Info("21 keypoints for right hand already selected. Try reset if something looks wrong.")
|
528 |
+
else:
|
529 |
+
keypoints[0].append(list(evt.index))
|
530 |
+
len_kps = len(keypoints[0])
|
531 |
+
kps[:len_kps] = np.array(keypoints[0])
|
532 |
+
elif side == "left":
|
533 |
+
if len(keypoints[1]) == 21:
|
534 |
+
gr.Info("21 keypoints for left hand already selected. Try reset if something looks wrong.")
|
535 |
+
else:
|
536 |
+
keypoints[1].append(list(evt.index))
|
537 |
+
len_kps = len(keypoints[1])
|
538 |
+
kps[21 : 21 + len_kps] = np.array(keypoints[1])
|
539 |
+
vis_hand = visualize_hand(kps, img, side, len_kps)
|
540 |
+
return vis_hand, keypoints
|
541 |
+
|
542 |
+
|
543 |
+
def undo_kps(img, keypoints, side: Literal["right", "left"]):
|
544 |
+
if keypoints is None:
|
545 |
+
return img, None
|
546 |
+
kps = np.zeros((42, 2))
|
547 |
+
if side == "right":
|
548 |
+
if len(keypoints[0]) == 0:
|
549 |
+
return img, keypoints
|
550 |
+
keypoints[0].pop()
|
551 |
+
len_kps = len(keypoints[0])
|
552 |
+
kps[:len_kps] = np.array(keypoints[0])
|
553 |
+
elif side == "left":
|
554 |
+
if len(keypoints[1]) == 0:
|
555 |
+
return img, keypoints
|
556 |
+
keypoints[1].pop()
|
557 |
+
len_kps = len(keypoints[1])
|
558 |
+
kps[21 : 21 + len_kps] = np.array(keypoints[1])
|
559 |
+
vis_hand = visualize_hand(kps, img, side, len_kps)
|
560 |
+
return vis_hand, keypoints
|
561 |
+
|
562 |
+
|
563 |
+
def reset_kps(img, keypoints, side: Literal["right", "left"]):
|
564 |
+
if keypoints is None:
|
565 |
+
return img, None
|
566 |
+
if side == "right":
|
567 |
+
keypoints[0] = []
|
568 |
+
elif side == "left":
|
569 |
+
keypoints[1] = []
|
570 |
+
return img, keypoints
|
571 |
+
|
572 |
+
# @spaces.GPU(duration=60)
|
573 |
+
def sample_diff(ref_cond, target_cond, target_keypts, num_gen, seed, cfg):
|
574 |
+
set_seed(seed)
|
575 |
+
z = torch.randn(
|
576 |
+
(num_gen, opts.latent_dim, opts.latent_size[0], opts.latent_size[1]),
|
577 |
+
device=device,
|
578 |
+
)
|
579 |
+
print(f"z.device: {z.device}")
|
580 |
+
target_cond = target_cond.repeat(num_gen, 1, 1, 1).to(z.device)
|
581 |
+
ref_cond = ref_cond.repeat(num_gen, 1, 1, 1).to(z.device)
|
582 |
+
print(f"target_cond.max(): {target_cond.max()}, target_cond.min(): {target_cond.min()}")
|
583 |
+
print(f"ref_cond.max(): {ref_cond.max()}, ref_cond.min(): {ref_cond.min()}")
|
584 |
+
# novel view synthesis mode = off
|
585 |
+
nvs = torch.zeros(num_gen, dtype=torch.int, device=device)
|
586 |
+
z = torch.cat([z, z], 0)
|
587 |
+
model_kwargs = dict(
|
588 |
+
target_cond=torch.cat([target_cond, torch.zeros_like(target_cond)]),
|
589 |
+
ref_cond=torch.cat([ref_cond, torch.zeros_like(ref_cond)]),
|
590 |
+
nvs=torch.cat([nvs, 2 * torch.ones_like(nvs)]),
|
591 |
+
cfg_scale=cfg,
|
592 |
+
)
|
593 |
+
|
594 |
+
samples, _ = diffusion.p_sample_loop(
|
595 |
+
model.forward_with_cfg,
|
596 |
+
z.shape,
|
597 |
+
z,
|
598 |
+
clip_denoised=False,
|
599 |
+
model_kwargs=model_kwargs,
|
600 |
+
progress=True,
|
601 |
+
device=device,
|
602 |
+
).chunk(2)
|
603 |
+
sampled_images = autoencoder.decode(samples / opts.latent_scaling_factor)
|
604 |
+
sampled_images = torch.clamp(sampled_images, min=-1.0, max=1.0)
|
605 |
+
sampled_images = unnormalize(sampled_images.permute(0, 2, 3, 1).cpu().numpy())
|
606 |
+
|
607 |
+
results = []
|
608 |
+
results_pose = []
|
609 |
+
for i in range(MAX_N):
|
610 |
+
if i < num_gen:
|
611 |
+
results.append(sampled_images[i])
|
612 |
+
results_pose.append(visualize_hand(target_keypts, sampled_images[i]))
|
613 |
+
else:
|
614 |
+
results.append(placeholder)
|
615 |
+
results_pose.append(placeholder)
|
616 |
+
print(f"results[0].max(): {results[0].max()}")
|
617 |
+
return results, results_pose
|
618 |
+
|
619 |
+
# @spaces.GPU(duration=120)
|
620 |
+
def ready_sample(img_ori, inpaint_mask, keypts):
|
621 |
+
img = cv2.resize(img_ori[..., :3], opts.image_size, interpolation=cv2.INTER_AREA)
|
622 |
+
sam_predictor.set_image(img)
|
623 |
+
if len(keypts[0]) == 0:
|
624 |
+
keypts[0] = np.zeros((21, 2))
|
625 |
+
elif len(keypts[0]) == 21:
|
626 |
+
keypts[0] = np.array(keypts[0], dtype=np.float32)
|
627 |
+
else:
|
628 |
+
gr.Info("Number of right hand keypoints should be either 0 or 21.")
|
629 |
+
return None, None
|
630 |
+
|
631 |
+
if len(keypts[1]) == 0:
|
632 |
+
keypts[1] = np.zeros((21, 2))
|
633 |
+
elif len(keypts[1]) == 21:
|
634 |
+
keypts[1] = np.array(keypts[1], dtype=np.float32)
|
635 |
+
else:
|
636 |
+
gr.Info("Number of left hand keypoints should be either 0 or 21.")
|
637 |
+
return None, None
|
638 |
+
|
639 |
+
keypts = np.concatenate(keypts, axis=0)
|
640 |
+
keypts = scale_keypoint(keypts, (LENGTH, LENGTH), opts.image_size)
|
641 |
+
# if keypts[0].sum() != 0 and keypts[21].sum() != 0:
|
642 |
+
# input_point = np.array([keypts[0], keypts[21]])
|
643 |
+
# # input_point = keypts
|
644 |
+
# input_label = np.array([1, 1])
|
645 |
+
# # input_label = np.ones_like(input_point[:, 0])
|
646 |
+
# elif keypts[0].sum() != 0:
|
647 |
+
# input_point = np.array(keypts[:1])
|
648 |
+
# # input_point = keypts[:21]
|
649 |
+
# input_label = np.array([1])
|
650 |
+
# # input_label = np.ones_like(input_point[:21, 0])
|
651 |
+
# elif keypts[21].sum() != 0:
|
652 |
+
# input_point = np.array(keypts[21:22])
|
653 |
+
# # input_point = keypts[21:]
|
654 |
+
# input_label = np.array([1])
|
655 |
+
# # input_label = np.ones_like(input_point[21:, 0])
|
656 |
+
|
657 |
+
box_shift_ratio = 0.5
|
658 |
+
box_size_factor = 1.2
|
659 |
+
|
660 |
+
if keypts[0].sum() != 0 and keypts[21].sum() != 0:
|
661 |
+
input_point = np.array(keypts)
|
662 |
+
input_box = np.stack([keypts.min(axis=0), keypts.max(axis=0)])
|
663 |
+
elif keypts[0].sum() != 0:
|
664 |
+
input_point = np.array(keypts[:21])
|
665 |
+
input_box = np.stack([keypts[:21].min(axis=0), keypts[:21].max(axis=0)])
|
666 |
+
elif keypts[21].sum() != 0:
|
667 |
+
input_point = np.array(keypts[21:])
|
668 |
+
input_box = np.stack([keypts[21:].min(axis=0), keypts[21:].max(axis=0)])
|
669 |
+
else:
|
670 |
+
raise ValueError(
|
671 |
+
"Something wrong. If no hand detected, it should not reach here."
|
672 |
+
)
|
673 |
+
|
674 |
+
input_label = np.ones_like(input_point[:, 0]).astype(np.int32)
|
675 |
+
box_trans = input_box[0] * box_shift_ratio + input_box[1] * (1 - box_shift_ratio)
|
676 |
+
input_box = ((input_box - box_trans) * box_size_factor + box_trans).reshape(-1)
|
677 |
+
|
678 |
+
masks, _, _ = sam_predictor.predict(
|
679 |
+
point_coords=input_point,
|
680 |
+
point_labels=input_label,
|
681 |
+
box=input_box[None, :],
|
682 |
+
multimask_output=False,
|
683 |
+
)
|
684 |
+
hand_mask = masks[0]
|
685 |
+
|
686 |
+
inpaint_latent_mask = torch.tensor(
|
687 |
+
cv2.resize(
|
688 |
+
inpaint_mask, dsize=opts.latent_size, interpolation=cv2.INTER_NEAREST
|
689 |
+
),
|
690 |
+
dtype=torch.float,
|
691 |
+
# device=device,
|
692 |
+
).unsqueeze(0)[None, ...]
|
693 |
+
|
694 |
+
def make_ref_cond(
|
695 |
+
img,
|
696 |
+
keypts,
|
697 |
+
hand_mask,
|
698 |
+
device=device,
|
699 |
+
target_size=(256, 256),
|
700 |
+
latent_size=(32, 32),
|
701 |
+
):
|
702 |
+
image_transform = Compose(
|
703 |
+
[
|
704 |
+
ToTensor(),
|
705 |
+
Resize(target_size),
|
706 |
+
Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
|
707 |
+
]
|
708 |
+
)
|
709 |
+
image = image_transform(img)
|
710 |
+
kpts_valid = check_keypoints_validity(keypts, target_size)
|
711 |
+
heatmaps = torch.tensor(
|
712 |
+
keypoint_heatmap(
|
713 |
+
scale_keypoint(keypts, target_size, latent_size), latent_size, var=1.0
|
714 |
+
)
|
715 |
+
* kpts_valid[:, None, None],
|
716 |
+
dtype=torch.float,
|
717 |
+
# device=device,
|
718 |
+
)[None, ...]
|
719 |
+
mask = torch.tensor(
|
720 |
+
cv2.resize(
|
721 |
+
hand_mask.astype(int),
|
722 |
+
dsize=latent_size,
|
723 |
+
interpolation=cv2.INTER_NEAREST,
|
724 |
+
),
|
725 |
+
dtype=torch.float,
|
726 |
+
# device=device,
|
727 |
+
).unsqueeze(0)[None, ...]
|
728 |
+
return image[None, ...], heatmaps, mask
|
729 |
+
|
730 |
+
image, heatmaps, mask = make_ref_cond(
|
731 |
+
img,
|
732 |
+
keypts,
|
733 |
+
hand_mask * (1 - inpaint_mask),
|
734 |
+
device=device,
|
735 |
+
target_size=opts.image_size,
|
736 |
+
latent_size=opts.latent_size,
|
737 |
+
)
|
738 |
+
latent = opts.latent_scaling_factor * autoencoder.encode(image).sample()
|
739 |
+
target_cond = torch.cat([heatmaps, torch.zeros_like(mask)], 1)
|
740 |
+
ref_cond = torch.cat([latent, heatmaps, mask], 1)
|
741 |
+
ref_cond = torch.zeros_like(ref_cond)
|
742 |
+
|
743 |
+
img32 = cv2.resize(img, opts.latent_size, interpolation=cv2.INTER_NEAREST)
|
744 |
+
assert mask.max() == 1
|
745 |
+
vis_mask32 = mask_image(
|
746 |
+
img32, inpaint_latent_mask[0,0].cpu().numpy(), (255,255,255), transparent=False
|
747 |
+
).astype(np.uint8) # 1.0 - mask[0, 0].cpu().numpy()
|
748 |
+
|
749 |
+
assert np.unique(inpaint_mask).shape[0] <= 2
|
750 |
+
assert hand_mask.dtype == bool
|
751 |
+
mask256 = inpaint_mask # hand_mask * (1 - inpaint_mask)
|
752 |
+
vis_mask256 = mask_image(img, mask256, (255,255,255), transparent=False).astype(
|
753 |
+
np.uint8
|
754 |
+
) # 1 - mask256
|
755 |
+
|
756 |
+
return (
|
757 |
+
ref_cond,
|
758 |
+
target_cond,
|
759 |
+
latent,
|
760 |
+
inpaint_latent_mask,
|
761 |
+
keypts,
|
762 |
+
vis_mask32,
|
763 |
+
vis_mask256,
|
764 |
+
)
|
765 |
+
|
766 |
+
|
767 |
+
def switch_mask_size(radio):
|
768 |
+
if radio == "256x256":
|
769 |
+
out = (gr.update(visible=False), gr.update(visible=True))
|
770 |
+
elif radio == "latent size (32x32)":
|
771 |
+
out = (gr.update(visible=True), gr.update(visible=False))
|
772 |
+
return out
|
773 |
+
|
774 |
+
# @spaces.GPU(duration=300)
|
775 |
+
def sample_inpaint(
|
776 |
+
ref_cond,
|
777 |
+
target_cond,
|
778 |
+
latent,
|
779 |
+
inpaint_latent_mask,
|
780 |
+
keypts,
|
781 |
+
num_gen,
|
782 |
+
seed,
|
783 |
+
cfg,
|
784 |
+
quality,
|
785 |
+
):
|
786 |
+
set_seed(seed)
|
787 |
+
N = num_gen
|
788 |
+
jump_length = 10
|
789 |
+
jump_n_sample = quality
|
790 |
+
cfg_scale = cfg
|
791 |
+
z = torch.randn(
|
792 |
+
(N, opts.latent_dim, opts.latent_size[0], opts.latent_size[1]), device=device
|
793 |
+
)
|
794 |
+
target_cond_N = target_cond.repeat(N, 1, 1, 1).to(z.device)
|
795 |
+
ref_cond_N = ref_cond.repeat(N, 1, 1, 1).to(z.device)
|
796 |
+
# novel view synthesis mode = off
|
797 |
+
nvs = torch.zeros(N, dtype=torch.int, device=device)
|
798 |
+
z = torch.cat([z, z], 0)
|
799 |
+
model_kwargs = dict(
|
800 |
+
target_cond=torch.cat([target_cond_N, torch.zeros_like(target_cond_N)]),
|
801 |
+
ref_cond=torch.cat([ref_cond_N, torch.zeros_like(ref_cond_N)]),
|
802 |
+
nvs=torch.cat([nvs, 2 * torch.ones_like(nvs)]),
|
803 |
+
cfg_scale=cfg_scale,
|
804 |
+
)
|
805 |
+
|
806 |
+
samples, _ = diffusion.inpaint_p_sample_loop(
|
807 |
+
model.forward_with_cfg,
|
808 |
+
z.shape,
|
809 |
+
latent.to(z.device),
|
810 |
+
inpaint_latent_mask.to(z.device),
|
811 |
+
z,
|
812 |
+
clip_denoised=False,
|
813 |
+
model_kwargs=model_kwargs,
|
814 |
+
progress=True,
|
815 |
+
device=z.device,
|
816 |
+
jump_length=jump_length,
|
817 |
+
jump_n_sample=jump_n_sample,
|
818 |
+
).chunk(2)
|
819 |
+
sampled_images = autoencoder.decode(samples / opts.latent_scaling_factor)
|
820 |
+
sampled_images = torch.clamp(sampled_images, min=-1.0, max=1.0)
|
821 |
+
sampled_images = unnormalize(sampled_images.permute(0, 2, 3, 1).cpu().numpy())
|
822 |
+
|
823 |
+
# visualize
|
824 |
+
results = []
|
825 |
+
results_pose = []
|
826 |
+
for i in range(FIX_MAX_N):
|
827 |
+
if i < num_gen:
|
828 |
+
results.append(sampled_images[i])
|
829 |
+
results_pose.append(visualize_hand(keypts, sampled_images[i]))
|
830 |
+
else:
|
831 |
+
results.append(placeholder)
|
832 |
+
results_pose.append(placeholder)
|
833 |
+
return results, results_pose
|
834 |
+
|
835 |
+
|
836 |
+
def flip_hand(
|
837 |
+
img, pose_img, cond: Optional[torch.Tensor], keypts: Optional[torch.Tensor] = None, pose_manual_img = None,
|
838 |
+
manual_kp_right=None, manual_kp_left=None
|
839 |
+
):
|
840 |
+
if cond is None: # clear clicked
|
841 |
+
return None, None, None, None
|
842 |
+
img["composite"] = img["composite"][:, ::-1, :]
|
843 |
+
img["background"] = img["background"][:, ::-1, :]
|
844 |
+
img["layers"] = [layer[:, ::-1, :] for layer in img["layers"]]
|
845 |
+
pose_img = pose_img[:, ::-1, :]
|
846 |
+
cond = cond.flip(-1)
|
847 |
+
if keypts is not None: # cond is target_cond
|
848 |
+
if keypts[:21, :].sum() != 0:
|
849 |
+
keypts[:21, 0] = opts.image_size[1] - keypts[:21, 0]
|
850 |
+
# keypts[:21, 1] = opts.image_size[0] - keypts[:21, 1]
|
851 |
+
if keypts[21:, :].sum() != 0:
|
852 |
+
keypts[21:, 0] = opts.image_size[1] - keypts[21:, 0]
|
853 |
+
# keypts[21:, 1] = opts.image_size[0] - keypts[21:, 1]
|
854 |
+
if pose_manual_img is not None:
|
855 |
+
pose_manual_img = pose_manual_img[:, ::-1, :]
|
856 |
+
manual_kp_right = manual_kp_right[:, ::-1, :]
|
857 |
+
manual_kp_left = manual_kp_left[:, ::-1, :]
|
858 |
+
return img, pose_img, cond, keypts, pose_manual_img, manual_kp_right, manual_kp_left
|
859 |
+
|
860 |
+
|
861 |
+
def resize_to_full(img):
|
862 |
+
img["background"] = cv2.resize(img["background"], (LENGTH, LENGTH))
|
863 |
+
img["composite"] = cv2.resize(img["composite"], (LENGTH, LENGTH))
|
864 |
+
img["layers"] = [cv2.resize(layer, (LENGTH, LENGTH)) for layer in img["layers"]]
|
865 |
+
return img
|
866 |
+
|
867 |
+
|
868 |
+
def clear_all():
|
869 |
+
return (
|
870 |
+
None,
|
871 |
+
None,
|
872 |
+
None,
|
873 |
+
None,
|
874 |
+
None,
|
875 |
+
False,
|
876 |
+
None,
|
877 |
+
None,
|
878 |
+
False,
|
879 |
+
None,
|
880 |
+
None,
|
881 |
+
None,
|
882 |
+
None,
|
883 |
+
None,
|
884 |
+
None,
|
885 |
+
None,
|
886 |
+
1,
|
887 |
+
42,
|
888 |
+
3.0,
|
889 |
+
gr.update(interactive=False),
|
890 |
+
[]
|
891 |
+
)
|
892 |
+
|
893 |
+
|
894 |
+
def fix_clear_all():
|
895 |
+
return (
|
896 |
+
None,
|
897 |
+
None,
|
898 |
+
None,
|
899 |
+
None,
|
900 |
+
None,
|
901 |
+
None,
|
902 |
+
None,
|
903 |
+
None,
|
904 |
+
None,
|
905 |
+
None,
|
906 |
+
None,
|
907 |
+
None,
|
908 |
+
None,
|
909 |
+
None,
|
910 |
+
None,
|
911 |
+
None,
|
912 |
+
None,
|
913 |
+
1,
|
914 |
+
# (0,0),
|
915 |
+
42,
|
916 |
+
3.0,
|
917 |
+
10,
|
918 |
+
)
|
919 |
+
|
920 |
+
|
921 |
+
def enable_component(image1, image2):
|
922 |
+
if image1 is None or image2 is None:
|
923 |
+
return gr.update(interactive=False)
|
924 |
+
if "background" in image1 and "layers" in image1 and "composite" in image1:
|
925 |
+
if (
|
926 |
+
image1["background"].sum() == 0
|
927 |
+
and (sum([im.sum() for im in image1["layers"]]) == 0)
|
928 |
+
and image1["composite"].sum() == 0
|
929 |
+
):
|
930 |
+
return gr.update(interactive=False)
|
931 |
+
if "background" in image2 and "layers" in image2 and "composite" in image2:
|
932 |
+
if (
|
933 |
+
image2["background"].sum() == 0
|
934 |
+
and (sum([im.sum() for im in image2["layers"]]) == 0)
|
935 |
+
and image2["composite"].sum() == 0
|
936 |
+
):
|
937 |
+
return gr.update(interactive=False)
|
938 |
+
return gr.update(interactive=True)
|
939 |
+
|
940 |
+
|
941 |
+
def set_visible(checkbox, kpts, img_clean, img_pose_right, img_pose_left, done=None, done_info=None):
|
942 |
+
if kpts is None:
|
943 |
+
kpts = [[], []]
|
944 |
+
if "Right hand" not in checkbox:
|
945 |
+
kpts[0] = []
|
946 |
+
vis_right = img_clean
|
947 |
+
update_right = gr.update(visible=False)
|
948 |
+
update_r_info = gr.update(visible=False)
|
949 |
+
else:
|
950 |
+
vis_right = img_pose_right
|
951 |
+
update_right = gr.update(visible=True)
|
952 |
+
update_r_info = gr.update(visible=True)
|
953 |
+
|
954 |
+
if "Left hand" not in checkbox:
|
955 |
+
kpts[1] = []
|
956 |
+
vis_left = img_clean
|
957 |
+
update_left = gr.update(visible=False)
|
958 |
+
update_l_info = gr.update(visible=False)
|
959 |
+
else:
|
960 |
+
vis_left = img_pose_left
|
961 |
+
update_left = gr.update(visible=True)
|
962 |
+
update_l_info = gr.update(visible=True)
|
963 |
+
|
964 |
+
ret = [
|
965 |
+
kpts,
|
966 |
+
vis_right,
|
967 |
+
vis_left,
|
968 |
+
update_right,
|
969 |
+
update_right,
|
970 |
+
update_right,
|
971 |
+
update_left,
|
972 |
+
update_left,
|
973 |
+
update_left,
|
974 |
+
update_r_info,
|
975 |
+
update_l_info,
|
976 |
+
]
|
977 |
+
if done is not None:
|
978 |
+
if not checkbox:
|
979 |
+
ret.append(gr.update(visible=False))
|
980 |
+
ret.append(gr.update(visible=False))
|
981 |
+
else:
|
982 |
+
ret.append(gr.update(visible=True))
|
983 |
+
ret.append(gr.update(visible=True))
|
984 |
+
return tuple(ret)
|
985 |
+
|
986 |
+
def set_unvisible():
|
987 |
+
return (
|
988 |
+
gr.update(visible=False),
|
989 |
+
gr.update(visible=False),
|
990 |
+
gr.update(visible=False),
|
991 |
+
gr.update(visible=False),
|
992 |
+
gr.update(visible=False),
|
993 |
+
gr.update(visible=False),
|
994 |
+
gr.update(visible=False),
|
995 |
+
gr.update(visible=False),
|
996 |
+
gr.update(visible=False),
|
997 |
+
gr.update(visible=False),
|
998 |
+
gr.update(visible=False),
|
999 |
+
gr.update(visible=False)
|
1000 |
+
)
|
1001 |
+
|
1002 |
+
def set_no_hands(decider, component):
|
1003 |
+
if decider is None:
|
1004 |
+
no_hands = cv2.resize(np.array(Image.open("no_hands.png"))[..., :3], (LENGTH, LENGTH))
|
1005 |
+
return no_hands
|
1006 |
+
else:
|
1007 |
+
return component
|
1008 |
+
|
1009 |
+
# def visible_component(decider, component):
|
1010 |
+
# if decider is not None:
|
1011 |
+
# update_component = gr.update(visible=True)
|
1012 |
+
# else:
|
1013 |
+
# update_component = gr.update(visible=False)
|
1014 |
+
# return update_component
|
1015 |
+
|
1016 |
+
def unvisible_component(decider, component):
|
1017 |
+
if decider is not None:
|
1018 |
+
update_component = gr.update(visible=False)
|
1019 |
+
else:
|
1020 |
+
update_component = gr.update(visible=True)
|
1021 |
+
return update_component
|
1022 |
+
|
1023 |
+
def make_change(decider, state):
|
1024 |
+
'''
|
1025 |
+
if decider is not None, change the state's value. True/False does not matter.
|
1026 |
+
'''
|
1027 |
+
if decider is not None:
|
1028 |
+
if state:
|
1029 |
+
state = False
|
1030 |
+
else:
|
1031 |
+
state = True
|
1032 |
+
return state
|
1033 |
+
else:
|
1034 |
+
return state
|
1035 |
+
|
1036 |
+
LENGTH = 480
|
1037 |
+
|
1038 |
+
example_ref_imgs = [
|
1039 |
+
[
|
1040 |
+
"sample_images/sample1.jpg",
|
1041 |
+
],
|
1042 |
+
[
|
1043 |
+
"sample_images/sample2.jpg",
|
1044 |
+
],
|
1045 |
+
[
|
1046 |
+
"sample_images/sample3.jpg",
|
1047 |
+
],
|
1048 |
+
[
|
1049 |
+
"sample_images/sample4.jpg",
|
1050 |
+
],
|
1051 |
+
# [
|
1052 |
+
# "sample_images/sample5.jpg",
|
1053 |
+
# ],
|
1054 |
+
[
|
1055 |
+
"sample_images/sample6.jpg",
|
1056 |
+
],
|
1057 |
+
# [
|
1058 |
+
# "sample_images/sample7.jpg",
|
1059 |
+
# ],
|
1060 |
+
# [
|
1061 |
+
# "sample_images/sample8.jpg",
|
1062 |
+
# ],
|
1063 |
+
# [
|
1064 |
+
# "sample_images/sample9.jpg",
|
1065 |
+
# ],
|
1066 |
+
# [
|
1067 |
+
# "sample_images/sample10.jpg",
|
1068 |
+
# ],
|
1069 |
+
# [
|
1070 |
+
# "sample_images/sample11.jpg",
|
1071 |
+
# ],
|
1072 |
+
# ["pose_images/pose1.jpg"],
|
1073 |
+
# ["pose_images/pose2.jpg"],
|
1074 |
+
# ["pose_images/pose3.jpg"],
|
1075 |
+
# ["pose_images/pose4.jpg"],
|
1076 |
+
# ["pose_images/pose5.jpg"],
|
1077 |
+
# ["pose_images/pose6.jpg"],
|
1078 |
+
# ["pose_images/pose7.jpg"],
|
1079 |
+
# ["pose_images/pose8.jpg"],
|
1080 |
+
]
|
1081 |
+
example_target_imgs = [
|
1082 |
+
# [
|
1083 |
+
# "sample_images/sample1.jpg",
|
1084 |
+
# ],
|
1085 |
+
# [
|
1086 |
+
# "sample_images/sample2.jpg",
|
1087 |
+
# ],
|
1088 |
+
# [
|
1089 |
+
# "sample_images/sample3.jpg",
|
1090 |
+
# ],
|
1091 |
+
# [
|
1092 |
+
# "sample_images/sample4.jpg",
|
1093 |
+
# ],
|
1094 |
+
[
|
1095 |
+
"sample_images/sample5.jpg",
|
1096 |
+
],
|
1097 |
+
# [
|
1098 |
+
# "sample_images/sample6.jpg",
|
1099 |
+
# ],
|
1100 |
+
# [
|
1101 |
+
# "sample_images/sample7.jpg",
|
1102 |
+
# ],
|
1103 |
+
# [
|
1104 |
+
# "sample_images/sample8.jpg",
|
1105 |
+
# ],
|
1106 |
+
[
|
1107 |
+
"sample_images/sample9.jpg",
|
1108 |
+
],
|
1109 |
+
[
|
1110 |
+
"sample_images/sample10.jpg",
|
1111 |
+
],
|
1112 |
+
[
|
1113 |
+
"sample_images/sample11.jpg",
|
1114 |
+
],
|
1115 |
+
["pose_images/pose1.jpg"],
|
1116 |
+
# ["pose_images/pose2.jpg"],
|
1117 |
+
# ["pose_images/pose3.jpg"],
|
1118 |
+
# ["pose_images/pose4.jpg"],
|
1119 |
+
# ["pose_images/pose5.jpg"],
|
1120 |
+
# ["pose_images/pose6.jpg"],
|
1121 |
+
# ["pose_images/pose7.jpg"],
|
1122 |
+
# ["pose_images/pose8.jpg"],
|
1123 |
+
]
|
1124 |
+
fix_example_imgs = [
|
1125 |
+
["bad_hands/1.jpg"], # "bad_hands/1_mask.jpg"],
|
1126 |
+
# ["bad_hands/2.jpg"], # "bad_hands/2_mask.jpg"],
|
1127 |
+
["bad_hands/3.jpg"], # "bad_hands/3_mask.jpg"],
|
1128 |
+
# ["bad_hands/4.jpg"], # "bad_hands/4_mask.jpg"],
|
1129 |
+
["bad_hands/5.jpg"], # "bad_hands/5_mask.jpg"],
|
1130 |
+
["bad_hands/6.jpg"], # "bad_hands/6_mask.jpg"],
|
1131 |
+
["bad_hands/7.jpg"], # "bad_hands/7_mask.jpg"],
|
1132 |
+
# ["bad_hands/8.jpg"], # "bad_hands/8_mask.jpg"],
|
1133 |
+
# ["bad_hands/9.jpg"], # "bad_hands/9_mask.jpg"],
|
1134 |
+
# ["bad_hands/10.jpg"], # "bad_hands/10_mask.jpg"],
|
1135 |
+
# ["bad_hands/11.jpg"], # "bad_hands/11_mask.jpg"],
|
1136 |
+
# ["bad_hands/12.jpg"], # "bad_hands/12_mask.jpg"],
|
1137 |
+
# ["bad_hands/13.jpg"], # "bad_hands/13_mask.jpg"],
|
1138 |
+
["bad_hands/14.jpg"],
|
1139 |
+
["bad_hands/15.jpg"],
|
1140 |
+
]
|
1141 |
+
custom_css = """
|
1142 |
+
.gradio-container .examples img {
|
1143 |
+
width: 240px !important;
|
1144 |
+
height: 240px !important;
|
1145 |
+
}
|
1146 |
+
"""
|
1147 |
+
|
1148 |
+
_HEADER_ = '''
|
1149 |
+
<div style="text-align: center;">
|
1150 |
+
<h1><b>FoundHand: Large-Scale Domain-Specific Learning for Controllable Hand Image Generation</b></h1>
|
1151 |
+
<h2 style="color: #777777;">CVPR 2025</h2>
|
1152 |
+
<style>
|
1153 |
+
.link-spacing {
|
1154 |
+
margin-right: 20px;
|
1155 |
+
}
|
1156 |
+
</style>
|
1157 |
+
<p style="font-size: 15px;">
|
1158 |
+
<span style="display: inline-block; margin-right: 30px;">Brown University</span>
|
1159 |
+
<span style="display: inline-block;">Meta Reality Labs</span>
|
1160 |
+
</p>
|
1161 |
+
<h3>
|
1162 |
+
<a href='https://arxiv.org/abs/2412.02690' target='_blank' class="link-spacing">Paper</a>
|
1163 |
+
<a href='https://ivl.cs.brown.edu/research/foundhand.html' target='_blank' class="link-spacing">Project Page</a>
|
1164 |
+
<a href='' target='_blank' class="link-spacing">Code</a>
|
1165 |
+
<a href='' target='_blank'>Model Weights</a>
|
1166 |
+
</h3>
|
1167 |
+
<p>Below are two important abilities of our model. First, we can <b>edit hand poses</b> given two hand images - one is the image to edit, and the other one provides target hand pose. Second, we can automatically <b>fix malformed hand images</b>, following the user-provided target hand pose and area to fix.</p>
|
1168 |
+
</div>
|
1169 |
+
'''
|
1170 |
+
|
1171 |
+
_CITE_ = r"""
|
1172 |
+
```
|
1173 |
+
@article{chen2024foundhand,
|
1174 |
+
title={FoundHand: Large-Scale Domain-Specific Learning for Controllable Hand Image Generation},
|
1175 |
+
author={Chen, Kefan and Min, Chaerin and Zhang, Linguang and Hampali, Shreyas and Keskin, Cem and Sridhar, Srinath},
|
1176 |
+
journal={arXiv preprint arXiv:2412.02690},
|
1177 |
+
year={2024}
|
1178 |
+
}
|
1179 |
+
```
|
1180 |
+
"""
|
1181 |
+
|
1182 |
+
with gr.Blocks(css=custom_css, theme="soft") as demo:
|
1183 |
+
gr.Markdown(_HEADER_)
|
1184 |
+
with gr.Tab("Edit Hand Poses"):
|
1185 |
+
ref_img = gr.State(value=None)
|
1186 |
+
ref_im_raw = gr.State(value=None)
|
1187 |
+
ref_kp_raw = gr.State(value=0)
|
1188 |
+
ref_kp_got = gr.State(value=None)
|
1189 |
+
dump = gr.State(value=None)
|
1190 |
+
ref_cond = gr.State(value=None)
|
1191 |
+
ref_manual_cond = gr.State(value=None)
|
1192 |
+
ref_auto_cond = gr.State(value=None)
|
1193 |
+
keypts = gr.State(value=None)
|
1194 |
+
target_img = gr.State(value=None)
|
1195 |
+
target_cond = gr.State(value=None)
|
1196 |
+
target_keypts = gr.State(value=None)
|
1197 |
+
dump = gr.State(value=None)
|
1198 |
+
with gr.Row():
|
1199 |
+
with gr.Column():
|
1200 |
+
gr.Markdown(
|
1201 |
+
"""<p style="text-align: center; font-size: 20px; font-weight: bold;">1. Upload a hand image to edit 📥</p>"""
|
1202 |
+
)
|
1203 |
+
gr.Markdown(
|
1204 |
+
"""<p style="text-align: center;">① Optionally crop the image</p>"""
|
1205 |
+
)
|
1206 |
+
# gr.Markdown("""<p style="text-align: center;"><br></p>""")
|
1207 |
+
ref = gr.ImageEditor(
|
1208 |
+
type="numpy",
|
1209 |
+
label="Reference",
|
1210 |
+
show_label=True,
|
1211 |
+
height=LENGTH,
|
1212 |
+
width=LENGTH,
|
1213 |
+
brush=False,
|
1214 |
+
layers=False,
|
1215 |
+
crop_size="1:1",
|
1216 |
+
)
|
1217 |
+
gr.Examples(example_ref_imgs, [ref], examples_per_page=20)
|
1218 |
+
gr.Markdown(
|
1219 |
+
"""<p style="text-align: center;">② Hit the "Finish Cropping" button to get hand pose</p>"""
|
1220 |
+
)
|
1221 |
+
ref_finish_crop = gr.Button(value="Finish Cropping", interactive=False)
|
1222 |
+
with gr.Tab("Automatic hand keypoints"):
|
1223 |
+
ref_pose = gr.Image(
|
1224 |
+
type="numpy",
|
1225 |
+
label="Reference Pose",
|
1226 |
+
show_label=True,
|
1227 |
+
height=LENGTH,
|
1228 |
+
width=LENGTH,
|
1229 |
+
interactive=False,
|
1230 |
+
)
|
1231 |
+
ref_use_auto = gr.Button(value="Click here to use automatic, not manual", interactive=False, visible=True)
|
1232 |
+
with gr.Tab("Manual hand keypoints"):
|
1233 |
+
ref_manual_checkbox_info = gr.Markdown(
|
1234 |
+
"""<p style="text-align: center;"><b>Step 1.</b> Tell us if this is right, left, or both hands.</p>""",
|
1235 |
+
visible=True,
|
1236 |
+
)
|
1237 |
+
ref_manual_checkbox = gr.CheckboxGroup(
|
1238 |
+
["Right hand", "Left hand"],
|
1239 |
+
# label="Hand side",
|
1240 |
+
# info="Hand pose failed to automatically detected. Now let's enable user-provided hand pose. First of all, please tell us if this is right, left, or both hands",
|
1241 |
+
show_label=False,
|
1242 |
+
visible=True,
|
1243 |
+
interactive=True,
|
1244 |
+
)
|
1245 |
+
ref_manual_kp_r_info = gr.Markdown(
|
1246 |
+
"""<p style="text-align: center;"><b>Step 2.</b> Click on image to provide hand keypoints for <b>right</b> hand. See \"OpenPose Keypoint Convention\" for guidance.</p>""",
|
1247 |
+
visible=False,
|
1248 |
+
)
|
1249 |
+
ref_manual_kp_right = gr.Image(
|
1250 |
+
type="numpy",
|
1251 |
+
label="Keypoint Selection (right hand)",
|
1252 |
+
show_label=True,
|
1253 |
+
height=LENGTH,
|
1254 |
+
width=LENGTH,
|
1255 |
+
interactive=False,
|
1256 |
+
visible=False,
|
1257 |
+
sources=[],
|
1258 |
+
)
|
1259 |
+
with gr.Row():
|
1260 |
+
ref_manual_undo_right = gr.Button(
|
1261 |
+
value="Undo", interactive=True, visible=False
|
1262 |
+
)
|
1263 |
+
ref_manual_reset_right = gr.Button(
|
1264 |
+
value="Reset", interactive=True, visible=False
|
1265 |
+
)
|
1266 |
+
ref_manual_kp_l_info = gr.Markdown(
|
1267 |
+
"""<p style="text-align: center;"><b>Step 2.</b> Click on image to provide hand keypoints for <b>left</b> hand. See \"OpenPose keypoint convention\" for guidance.</p>""",
|
1268 |
+
visible=False
|
1269 |
+
)
|
1270 |
+
ref_manual_kp_left = gr.Image(
|
1271 |
+
type="numpy",
|
1272 |
+
label="Keypoint Selection (left hand)",
|
1273 |
+
show_label=True,
|
1274 |
+
height=LENGTH,
|
1275 |
+
width=LENGTH,
|
1276 |
+
interactive=False,
|
1277 |
+
visible=False,
|
1278 |
+
sources=[],
|
1279 |
+
)
|
1280 |
+
with gr.Row():
|
1281 |
+
ref_manual_undo_left = gr.Button(
|
1282 |
+
value="Undo", interactive=True, visible=False
|
1283 |
+
)
|
1284 |
+
ref_manual_reset_left = gr.Button(
|
1285 |
+
value="Reset", interactive=True, visible=False
|
1286 |
+
)
|
1287 |
+
ref_manual_done_info = gr.Markdown(
|
1288 |
+
"""<p style="text-align: center;"><b>Step 3.</b> Hit \"Done\" button to confirm.</p>""",
|
1289 |
+
visible=False,
|
1290 |
+
)
|
1291 |
+
ref_manual_done = gr.Button(value="Done", interactive=True, visible=False)
|
1292 |
+
ref_manual_pose = gr.Image(
|
1293 |
+
type="numpy",
|
1294 |
+
label="Reference Pose",
|
1295 |
+
show_label=True,
|
1296 |
+
height=LENGTH,
|
1297 |
+
width=LENGTH,
|
1298 |
+
interactive=False,
|
1299 |
+
visible=False
|
1300 |
+
)
|
1301 |
+
ref_use_manual = gr.Button(value="Click here to use manual, not automatic", interactive=True, visible=False)
|
1302 |
+
ref_manual_instruct = gr.Markdown(
|
1303 |
+
value="""<p style="text-align: left; font-weight: bold; ">OpenPose Keypoints Convention</p>""",
|
1304 |
+
visible=True
|
1305 |
+
)
|
1306 |
+
ref_manual_openpose = gr.Image(
|
1307 |
+
value="openpose.png",
|
1308 |
+
type="numpy",
|
1309 |
+
# label="OpenPose keypoints convention",
|
1310 |
+
show_label=False,
|
1311 |
+
height=LENGTH // 2,
|
1312 |
+
width=LENGTH // 2,
|
1313 |
+
interactive=False,
|
1314 |
+
visible=True
|
1315 |
+
)
|
1316 |
+
gr.Markdown(
|
1317 |
+
"""<p style="text-align: center;">③ Optionally flip the hand</p>"""
|
1318 |
+
)
|
1319 |
+
ref_flip = gr.Checkbox(
|
1320 |
+
value=False, label="Flip Handedness (Reference)", interactive=False
|
1321 |
+
)
|
1322 |
+
with gr.Column():
|
1323 |
+
gr.Markdown(
|
1324 |
+
"""<p style="text-align: center; font-size: 20px; font-weight: bold;">2. Upload a hand image for target hand pose 📥</p>"""
|
1325 |
+
)
|
1326 |
+
gr.Markdown(
|
1327 |
+
"""<p style="text-align: center;">① Optionally crop the image</p>"""
|
1328 |
+
)
|
1329 |
+
target = gr.ImageEditor(
|
1330 |
+
type="numpy",
|
1331 |
+
label="Target",
|
1332 |
+
show_label=True,
|
1333 |
+
height=LENGTH,
|
1334 |
+
width=LENGTH,
|
1335 |
+
brush=False,
|
1336 |
+
layers=False,
|
1337 |
+
crop_size="1:1",
|
1338 |
+
)
|
1339 |
+
gr.Examples(example_target_imgs, [target], examples_per_page=20)
|
1340 |
+
gr.Markdown(
|
1341 |
+
"""<p style="text-align: center;">② Hit the "Finish Cropping" button to get hand pose</p>"""
|
1342 |
+
)
|
1343 |
+
target_finish_crop = gr.Button(
|
1344 |
+
value="Finish Cropping", interactive=False
|
1345 |
+
)
|
1346 |
+
target_pose = gr.Image(
|
1347 |
+
type="numpy",
|
1348 |
+
label="Target Pose",
|
1349 |
+
show_label=True,
|
1350 |
+
height=LENGTH,
|
1351 |
+
width=LENGTH,
|
1352 |
+
interactive=False,
|
1353 |
+
)
|
1354 |
+
gr.Markdown(
|
1355 |
+
"""<p style="text-align: center;">③ Optionally flip the hand</p>"""
|
1356 |
+
)
|
1357 |
+
target_flip = gr.Checkbox(
|
1358 |
+
value=False, label="Flip Handedness (Target)", interactive=False
|
1359 |
+
)
|
1360 |
+
with gr.Column():
|
1361 |
+
gr.Markdown(
|
1362 |
+
"""<p style="text-align: center; font-size: 20px; font-weight: bold;">3. Press "Run" to get the edited results 🎯</p>"""
|
1363 |
+
)
|
1364 |
+
# gr.Markdown(
|
1365 |
+
# """<p style="text-align: center;">[NOTE] Run will be enabled after the previous steps have been completed</p>"""
|
1366 |
+
# )
|
1367 |
+
run = gr.Button(value="Run", interactive=False)
|
1368 |
+
gr.Markdown(
|
1369 |
+
"""<p style="text-align: center;">⚠️ ~20s per generation with RTX3090. ~50s with A100. <br>(For example, if you set Number of generations as 2, it would take around 40s)</p>"""
|
1370 |
+
)
|
1371 |
+
results = gr.Gallery(
|
1372 |
+
type="numpy",
|
1373 |
+
label="Results",
|
1374 |
+
show_label=True,
|
1375 |
+
height=LENGTH,
|
1376 |
+
min_width=LENGTH,
|
1377 |
+
columns=MAX_N,
|
1378 |
+
interactive=False,
|
1379 |
+
preview=True,
|
1380 |
+
)
|
1381 |
+
results_pose = gr.Gallery(
|
1382 |
+
type="numpy",
|
1383 |
+
label="Results Pose",
|
1384 |
+
show_label=True,
|
1385 |
+
height=LENGTH,
|
1386 |
+
min_width=LENGTH,
|
1387 |
+
columns=MAX_N,
|
1388 |
+
interactive=False,
|
1389 |
+
preview=True,
|
1390 |
+
)
|
1391 |
+
gr.Markdown(
|
1392 |
+
"""<p style="text-align: center;">✨ Hit "Clear" to restart from the beginning</p>"""
|
1393 |
+
)
|
1394 |
+
clear = gr.ClearButton()
|
1395 |
+
|
1396 |
+
# gr.Markdown(
|
1397 |
+
# """<p style="text-align: left; font-size: 25px;"><b>More options</b></p>"""
|
1398 |
+
# )
|
1399 |
+
with gr.Tab("More options"):
|
1400 |
+
with gr.Row():
|
1401 |
+
n_generation = gr.Slider(
|
1402 |
+
label="Number of generations",
|
1403 |
+
value=1,
|
1404 |
+
minimum=1,
|
1405 |
+
maximum=MAX_N,
|
1406 |
+
step=1,
|
1407 |
+
randomize=False,
|
1408 |
+
interactive=True,
|
1409 |
+
)
|
1410 |
+
seed = gr.Slider(
|
1411 |
+
label="Seed",
|
1412 |
+
value=42,
|
1413 |
+
minimum=0,
|
1414 |
+
maximum=10000,
|
1415 |
+
step=1,
|
1416 |
+
randomize=False,
|
1417 |
+
interactive=True,
|
1418 |
+
)
|
1419 |
+
cfg = gr.Slider(
|
1420 |
+
label="Classifier free guidance scale",
|
1421 |
+
value=2.5,
|
1422 |
+
minimum=0.0,
|
1423 |
+
maximum=10.0,
|
1424 |
+
step=0.1,
|
1425 |
+
randomize=False,
|
1426 |
+
interactive=True,
|
1427 |
+
)
|
1428 |
+
|
1429 |
+
ref.change(enable_component, [ref, ref], ref_finish_crop)
|
1430 |
+
# ref_finish_crop.click(get_ref_anno, [ref], [ref_img, ref_pose, ref_cond])
|
1431 |
+
ref_finish_crop.click(prepare_ref_anno, [ref], [ref_im_raw, ref_kp_raw])
|
1432 |
+
# ref_kp_raw.change(make_change, [ref_kp_raw, ref_kp_watcher], ref_kp_watcher)
|
1433 |
+
# ref_kp_raw.change(set_no_hands, [ref_kp_raw, ref_pose], ref_pose)
|
1434 |
+
ref_kp_raw.change(lambda x: x, ref_im_raw, ref_manual_kp_right)
|
1435 |
+
ref_kp_raw.change(lambda x: x, ref_im_raw, ref_manual_kp_left)
|
1436 |
+
# ref_kp_raw.change(unvisible_component, [ref_kp_raw, ref_manual_checkbox], ref_manual_checkbox)
|
1437 |
+
# ref_kp_raw.change(unvisible_component, [ref_kp_raw, ref_manual_checkbox_info], ref_manual_checkbox_info)
|
1438 |
+
# ref_kp_raw.change(unvisible_component, [ref_kp_raw, ref_manual_openpose], ref_manual_openpose)
|
1439 |
+
# ref_kp_raw.change(unvisible_component, [ref_kp_raw, ref_manual_instruct], ref_manual_instruct)
|
1440 |
+
# ref_kp_raw.change(lambda x: x, ref_kp_raw, ref_kp_got)
|
1441 |
+
ref_manual_checkbox.select(
|
1442 |
+
set_visible,
|
1443 |
+
[ref_manual_checkbox, ref_kp_got, ref_im_raw, ref_manual_kp_right, ref_manual_kp_left, ref_manual_done],
|
1444 |
+
[
|
1445 |
+
ref_kp_got,
|
1446 |
+
ref_manual_kp_right,
|
1447 |
+
ref_manual_kp_left,
|
1448 |
+
ref_manual_kp_right,
|
1449 |
+
ref_manual_undo_right,
|
1450 |
+
ref_manual_reset_right,
|
1451 |
+
ref_manual_kp_left,
|
1452 |
+
ref_manual_undo_left,
|
1453 |
+
ref_manual_reset_left,
|
1454 |
+
ref_manual_kp_r_info,
|
1455 |
+
ref_manual_kp_l_info,
|
1456 |
+
ref_manual_done,
|
1457 |
+
ref_manual_done_info
|
1458 |
+
]
|
1459 |
+
)
|
1460 |
+
ref_manual_kp_right.select(
|
1461 |
+
get_kps, [ref_im_raw, ref_kp_got, gr.State("right")], [ref_manual_kp_right, ref_kp_got]
|
1462 |
+
)
|
1463 |
+
ref_manual_undo_right.click(
|
1464 |
+
undo_kps, [ref_im_raw, ref_kp_got, gr.State("right")], [ref_manual_kp_right, ref_kp_got]
|
1465 |
+
)
|
1466 |
+
ref_manual_reset_right.click(
|
1467 |
+
reset_kps, [ref_im_raw, ref_kp_got, gr.State("right")], [ref_manual_kp_right, ref_kp_got]
|
1468 |
+
)
|
1469 |
+
ref_manual_kp_left.select(
|
1470 |
+
get_kps, [ref_im_raw, ref_kp_got, gr.State("left")], [ref_manual_kp_left, ref_kp_got]
|
1471 |
+
)
|
1472 |
+
ref_manual_undo_left.click(
|
1473 |
+
undo_kps, [ref_im_raw, ref_kp_got, gr.State("left")], [ref_manual_kp_left, ref_kp_got]
|
1474 |
+
)
|
1475 |
+
ref_manual_reset_left.click(
|
1476 |
+
reset_kps, [ref_im_raw, ref_kp_got, gr.State("left")], [ref_manual_kp_left, ref_kp_got]
|
1477 |
+
)
|
1478 |
+
# ref_manual_done.click(lambda x: ~x, ref_kp_watcher, ref_kp_watcher)
|
1479 |
+
ref_manual_done.click(get_ref_anno, [ref_im_raw, ref_kp_got], [ref_img, ref_manual_pose, ref_manual_cond])
|
1480 |
+
ref_manual_cond.change(lambda x: x, ref_manual_cond, ref_cond)
|
1481 |
+
ref_use_manual.click(lambda x: x, ref_manual_cond, ref_cond)
|
1482 |
+
ref_use_manual.click(lambda x: gr.Info("Manual hand keypoints will be used for 'Reference'", duration=3))
|
1483 |
+
ref_manual_done.click(lambda x: gr.update(visible=True), ref_manual_pose, ref_manual_pose)
|
1484 |
+
ref_manual_done.click(lambda x: gr.update(visible=True), ref_use_manual, ref_use_manual)
|
1485 |
+
ref_manual_pose.change(enable_component, [ref_manual_pose, ref_manual_pose], ref_manual_done)
|
1486 |
+
# ref_pose.change(enable_component, [ref_pose, gr.State(value=True)], ref_ok)
|
1487 |
+
ref_kp_raw.change(get_ref_anno, [ref_im_raw, ref_kp_raw], [ref_img, ref_pose, ref_auto_cond])
|
1488 |
+
ref_auto_cond.change(lambda x: x, ref_auto_cond, ref_cond)
|
1489 |
+
ref_use_auto.click(lambda x: x, ref_auto_cond, ref_cond)
|
1490 |
+
ref_use_auto.click(lambda x: gr.Info("Automatic hand keypoints will be used for 'Reference'", duration=3))
|
1491 |
+
ref_pose.change(enable_component, [ref_kp_raw, ref_pose], ref_use_auto)
|
1492 |
+
ref_pose.change(enable_component, [ref_img, ref_pose], ref_flip)
|
1493 |
+
ref_manual_pose.change(enable_component, [ref_img, ref_manual_pose], ref_flip)
|
1494 |
+
ref_flip.select(
|
1495 |
+
flip_hand, [ref, ref_pose, ref_cond, gr.State(value=None), ref_manual_pose, ref_manual_kp_right, ref_manual_kp_left], [ref, ref_pose, ref_cond, dump, ref_manual_pose, ref_manual_kp_right, ref_manual_kp_left]
|
1496 |
+
)
|
1497 |
+
target.change(enable_component, [target, target], target_finish_crop)
|
1498 |
+
target_finish_crop.click(
|
1499 |
+
get_target_anno,
|
1500 |
+
[target],
|
1501 |
+
[target_img, target_pose, target_cond, target_keypts],
|
1502 |
+
)
|
1503 |
+
target_pose.change(enable_component, [target_img, target_pose], target_flip)
|
1504 |
+
target_flip.select(
|
1505 |
+
flip_hand,
|
1506 |
+
[target, target_pose, target_cond, target_keypts],
|
1507 |
+
[target, target_pose, target_cond, target_keypts],
|
1508 |
+
)
|
1509 |
+
ref_pose.change(enable_component, [ref_pose, target_pose], run)
|
1510 |
+
ref_manual_pose.change(enable_component, [ref_manual_pose, target_pose], run)
|
1511 |
+
target_pose.change(enable_component, [ref_pose, target_pose], run)
|
1512 |
+
run.click(
|
1513 |
+
sample_diff,
|
1514 |
+
[ref_cond, target_cond, target_keypts, n_generation, seed, cfg],
|
1515 |
+
[results, results_pose],
|
1516 |
+
)
|
1517 |
+
clear.click(
|
1518 |
+
clear_all,
|
1519 |
+
[],
|
1520 |
+
[
|
1521 |
+
ref,
|
1522 |
+
ref_manual_kp_right,
|
1523 |
+
ref_manual_kp_left,
|
1524 |
+
ref_pose,
|
1525 |
+
ref_manual_pose,
|
1526 |
+
ref_flip,
|
1527 |
+
target,
|
1528 |
+
target_pose,
|
1529 |
+
target_flip,
|
1530 |
+
results,
|
1531 |
+
results_pose,
|
1532 |
+
ref_img,
|
1533 |
+
ref_cond,
|
1534 |
+
# mask,
|
1535 |
+
target_img,
|
1536 |
+
target_cond,
|
1537 |
+
target_keypts,
|
1538 |
+
n_generation,
|
1539 |
+
seed,
|
1540 |
+
cfg,
|
1541 |
+
ref_kp_raw,
|
1542 |
+
ref_manual_checkbox
|
1543 |
+
],
|
1544 |
+
)
|
1545 |
+
clear.click(
|
1546 |
+
set_unvisible,
|
1547 |
+
[],
|
1548 |
+
[
|
1549 |
+
# ref_manual_checkbox,
|
1550 |
+
# ref_manual_instruct,
|
1551 |
+
# ref_manual_openpose,
|
1552 |
+
ref_manual_kp_r_info,
|
1553 |
+
ref_manual_kp_l_info,
|
1554 |
+
ref_manual_undo_left,
|
1555 |
+
ref_manual_undo_right,
|
1556 |
+
ref_manual_reset_left,
|
1557 |
+
ref_manual_reset_right,
|
1558 |
+
ref_manual_done,
|
1559 |
+
ref_manual_done_info,
|
1560 |
+
ref_manual_pose,
|
1561 |
+
ref_use_manual,
|
1562 |
+
ref_manual_kp_right,
|
1563 |
+
ref_manual_kp_left
|
1564 |
+
]
|
1565 |
+
)
|
1566 |
+
|
1567 |
+
# gr.Markdown("""<p style="font-size: 25px; font-weight: bold;">Examples</p>""")
|
1568 |
+
# with gr.Tab("Reference"):
|
1569 |
+
# with gr.Row():
|
1570 |
+
# gr.Examples(example_imgs, [ref], examples_per_page=20)
|
1571 |
+
# with gr.Tab("Target"):
|
1572 |
+
# with gr.Row():
|
1573 |
+
# gr.Examples(example_imgs, [target], examples_per_page=20)
|
1574 |
+
with gr.Tab("Fix Hands"):
|
1575 |
+
fix_inpaint_mask = gr.State(value=None)
|
1576 |
+
fix_original = gr.State(value=None)
|
1577 |
+
fix_img = gr.State(value=None)
|
1578 |
+
fix_kpts = gr.State(value=None)
|
1579 |
+
fix_kpts_np = gr.State(value=None)
|
1580 |
+
fix_ref_cond = gr.State(value=None)
|
1581 |
+
fix_target_cond = gr.State(value=None)
|
1582 |
+
fix_latent = gr.State(value=None)
|
1583 |
+
fix_inpaint_latent = gr.State(value=None)
|
1584 |
+
# fix_size_memory = gr.State(value=(0, 0))
|
1585 |
+
# gr.Markdown("""<p style="text-align: center; font-size: 25px; font-weight: bold; ">⚠️ Note</p>""")
|
1586 |
+
# gr.Markdown("""<p>"Fix Hands" with A100 needs around 6 mins, which is beyond the ZeroGPU quota (5 mins). Please either purchase additional gpus from Hugging Face or wait for us to open-source our code soon so that you can use your own gpus🙏 </p>""")
|
1587 |
+
with gr.Row():
|
1588 |
+
with gr.Column():
|
1589 |
+
# gr.Markdown(
|
1590 |
+
# """<p style="text-align: center; font-size: 25px; font-weight: bold; ">1. Image Cropping & Brushing</p>"""
|
1591 |
+
# )
|
1592 |
+
gr.Markdown(
|
1593 |
+
"""<p style="text-align: center; font-size: 20px; font-weight: bold;">1. Upload a malformed hand image to fix 📥</p>"""
|
1594 |
+
)
|
1595 |
+
gr.Markdown(
|
1596 |
+
"""<p style="text-align: center;">① Optionally crop the image around the hand</p>"""
|
1597 |
+
)
|
1598 |
+
# gr.Markdown(
|
1599 |
+
# """<p style="text-align: center; font-size: 20px; font-weight: bold; ">A. Crop</p>"""
|
1600 |
+
# )
|
1601 |
+
fix_crop = gr.ImageEditor(
|
1602 |
+
type="numpy",
|
1603 |
+
sources=["upload", "webcam", "clipboard"],
|
1604 |
+
label="Image crop",
|
1605 |
+
show_label=True,
|
1606 |
+
height=LENGTH,
|
1607 |
+
width=LENGTH,
|
1608 |
+
layers=False,
|
1609 |
+
crop_size="1:1",
|
1610 |
+
brush=False,
|
1611 |
+
image_mode="RGBA",
|
1612 |
+
container=False,
|
1613 |
+
)
|
1614 |
+
fix_example = gr.Examples(
|
1615 |
+
fix_example_imgs,
|
1616 |
+
inputs=[fix_crop],
|
1617 |
+
examples_per_page=20,
|
1618 |
+
)
|
1619 |
+
gr.Markdown(
|
1620 |
+
"""<p style="text-align: center;">② Brush area (e.g., wrong finger) that needs to be fixed. This will serve as an inpaint mask</p>"""
|
1621 |
+
)
|
1622 |
+
# gr.Markdown(
|
1623 |
+
# """<p style="text-align: center; font-size: 20px; font-weight: bold; ">B. Brush</p>"""
|
1624 |
+
# )
|
1625 |
+
fix_ref = gr.ImageEditor(
|
1626 |
+
type="numpy",
|
1627 |
+
label="Image brush",
|
1628 |
+
sources=(),
|
1629 |
+
show_label=True,
|
1630 |
+
height=LENGTH,
|
1631 |
+
width=LENGTH,
|
1632 |
+
layers=False,
|
1633 |
+
transforms=("brush"),
|
1634 |
+
brush=gr.Brush(
|
1635 |
+
colors=["rgb(255, 255, 255)"], default_size=20
|
1636 |
+
), # 204, 50, 50
|
1637 |
+
image_mode="RGBA",
|
1638 |
+
container=False,
|
1639 |
+
interactive=False,
|
1640 |
+
)
|
1641 |
+
fix_finish_crop = gr.Button(
|
1642 |
+
value="Finish Croping & Brushing", interactive=False
|
1643 |
+
)
|
1644 |
+
with gr.Column():
|
1645 |
+
# gr.Markdown(
|
1646 |
+
# """<p style="text-align: center; font-size: 25px; font-weight: bold; ">2. Keypoint Selection</p>"""
|
1647 |
+
# )
|
1648 |
+
gr.Markdown(
|
1649 |
+
"""<p style="text-align: center; font-size: 20px; font-weight: bold;">2. Click on hand to get target hand pose</p>"""
|
1650 |
+
)
|
1651 |
+
# gr.Markdown(
|
1652 |
+
# """<p style="text-align: center;">On the hand, select 21 keypoints that you hope the output to be. <br>Please see the \"OpenPose keypoints convention\"</p>"""
|
1653 |
+
# )
|
1654 |
+
gr.Markdown(
|
1655 |
+
"""<p style="text-align: center;">① Tell us if this is right, left, or both hands</p>"""
|
1656 |
+
)
|
1657 |
+
fix_checkbox = gr.CheckboxGroup(
|
1658 |
+
["Right hand", "Left hand"],
|
1659 |
+
# value=["Right hand", "Left hand"],
|
1660 |
+
# label="Hand side",
|
1661 |
+
# info="Which side this hand is? Could be both.",
|
1662 |
+
show_label=False,
|
1663 |
+
interactive=False,
|
1664 |
+
)
|
1665 |
+
gr.Markdown(
|
1666 |
+
"""<p style="text-align: center;">② On the image, click 21 hand keypoints. This will serve as target hand poses. See the \"OpenPose keypoints convention\" for guidance.</p>"""
|
1667 |
+
)
|
1668 |
+
fix_kp_r_info = gr.Markdown(
|
1669 |
+
"""<p style="text-align: center; font-size: 20px; font-weight: bold; ">Select right only</p>""",
|
1670 |
+
visible=False,
|
1671 |
+
)
|
1672 |
+
fix_kp_right = gr.Image(
|
1673 |
+
type="numpy",
|
1674 |
+
label="Keypoint Selection (right hand)",
|
1675 |
+
show_label=True,
|
1676 |
+
height=LENGTH,
|
1677 |
+
width=LENGTH,
|
1678 |
+
interactive=False,
|
1679 |
+
visible=False,
|
1680 |
+
sources=[],
|
1681 |
+
)
|
1682 |
+
with gr.Row():
|
1683 |
+
fix_undo_right = gr.Button(
|
1684 |
+
value="Undo", interactive=False, visible=False
|
1685 |
+
)
|
1686 |
+
fix_reset_right = gr.Button(
|
1687 |
+
value="Reset", interactive=False, visible=False
|
1688 |
+
)
|
1689 |
+
fix_kp_l_info = gr.Markdown(
|
1690 |
+
"""<p style="text-align: center; font-size: 20px; font-weight: bold; ">Select left only</p>""",
|
1691 |
+
visible=False
|
1692 |
+
)
|
1693 |
+
fix_kp_left = gr.Image(
|
1694 |
+
type="numpy",
|
1695 |
+
label="Keypoint Selection (left hand)",
|
1696 |
+
show_label=True,
|
1697 |
+
height=LENGTH,
|
1698 |
+
width=LENGTH,
|
1699 |
+
interactive=False,
|
1700 |
+
visible=False,
|
1701 |
+
sources=[],
|
1702 |
+
)
|
1703 |
+
with gr.Row():
|
1704 |
+
fix_undo_left = gr.Button(
|
1705 |
+
value="Undo", interactive=False, visible=False
|
1706 |
+
)
|
1707 |
+
fix_reset_left = gr.Button(
|
1708 |
+
value="Reset", interactive=False, visible=False
|
1709 |
+
)
|
1710 |
+
gr.Markdown(
|
1711 |
+
"""<p style="text-align: left; font-weight: bold; ">OpenPose keypoints convention</p>"""
|
1712 |
+
)
|
1713 |
+
fix_openpose = gr.Image(
|
1714 |
+
value="openpose.png",
|
1715 |
+
type="numpy",
|
1716 |
+
# label="OpenPose keypoints convention",
|
1717 |
+
show_label=False,
|
1718 |
+
height=LENGTH // 2,
|
1719 |
+
width=LENGTH // 2,
|
1720 |
+
interactive=False,
|
1721 |
+
)
|
1722 |
+
with gr.Column():
|
1723 |
+
# gr.Markdown(
|
1724 |
+
# """<p style="text-align: center; font-size: 25px; font-weight: bold; ">3. Prepare Mask</p>"""
|
1725 |
+
# )
|
1726 |
+
gr.Markdown(
|
1727 |
+
"""<p style="text-align: center; font-size: 20px; font-weight: bold;">3. Press "Ready" to start pre-processing</p>"""
|
1728 |
+
)
|
1729 |
+
fix_ready = gr.Button(value="Ready", interactive=False)
|
1730 |
+
# fix_mask_size = gr.Radio(
|
1731 |
+
# ["256x256", "latent size (32x32)"],
|
1732 |
+
# label="Visualized inpaint mask size",
|
1733 |
+
# interactive=False,
|
1734 |
+
# value="256x256",
|
1735 |
+
# )
|
1736 |
+
gr.Markdown(
|
1737 |
+
"""<p style="text-align: center; font-weight: bold; ">Visualized (256, 256) Inpaint Mask</p>"""
|
1738 |
+
)
|
1739 |
+
fix_vis_mask32 = gr.Image(
|
1740 |
+
type="numpy",
|
1741 |
+
label=f"Visualized {opts.latent_size} Inpaint Mask",
|
1742 |
+
show_label=True,
|
1743 |
+
height=opts.latent_size,
|
1744 |
+
width=opts.latent_size,
|
1745 |
+
interactive=False,
|
1746 |
+
visible=False,
|
1747 |
+
)
|
1748 |
+
fix_vis_mask256 = gr.Image(
|
1749 |
+
type="numpy",
|
1750 |
+
# label=f"Visualized {opts.image_size} Inpaint Mask",
|
1751 |
+
visible=True,
|
1752 |
+
show_label=False,
|
1753 |
+
height=opts.image_size,
|
1754 |
+
width=opts.image_size,
|
1755 |
+
interactive=False,
|
1756 |
+
)
|
1757 |
+
gr.Markdown(
|
1758 |
+
"""<p style="text-align: center;">[NOTE] Above should be inpaint mask that you brushed, NOT the segmentation mask of the entire hand. </p>"""
|
1759 |
+
)
|
1760 |
+
with gr.Column():
|
1761 |
+
# gr.Markdown(
|
1762 |
+
# """<p style="text-align: center; font-size: 25px; font-weight: bold; ">4. Results</p>"""
|
1763 |
+
# )
|
1764 |
+
gr.Markdown(
|
1765 |
+
"""<p style="text-align: center; font-size: 20px; font-weight: bold;">4. Press "Run" to get the fixed hand image 🎯</p>"""
|
1766 |
+
)
|
1767 |
+
fix_run = gr.Button(value="Run", interactive=False)
|
1768 |
+
gr.Markdown(
|
1769 |
+
"""<p style="text-align: center;">⚠️ >3min and ~24GB per generation</p>"""
|
1770 |
+
)
|
1771 |
+
fix_result = gr.Gallery(
|
1772 |
+
type="numpy",
|
1773 |
+
label="Results",
|
1774 |
+
show_label=True,
|
1775 |
+
height=LENGTH,
|
1776 |
+
min_width=LENGTH,
|
1777 |
+
columns=FIX_MAX_N,
|
1778 |
+
interactive=False,
|
1779 |
+
preview=True,
|
1780 |
+
)
|
1781 |
+
fix_result_pose = gr.Gallery(
|
1782 |
+
type="numpy",
|
1783 |
+
label="Results Pose",
|
1784 |
+
show_label=True,
|
1785 |
+
height=LENGTH,
|
1786 |
+
min_width=LENGTH,
|
1787 |
+
columns=FIX_MAX_N,
|
1788 |
+
interactive=False,
|
1789 |
+
preview=True,
|
1790 |
+
)
|
1791 |
+
gr.Markdown(
|
1792 |
+
"""<p style="text-align: center;">✨ Hit "Clear" to restart from the beginning</p>"""
|
1793 |
+
)
|
1794 |
+
fix_clear = gr.ClearButton()
|
1795 |
+
|
1796 |
+
gr.Markdown(
|
1797 |
+
"""<p style="text-align: left; font-size: 25px;"><b>More options</b></p>"""
|
1798 |
+
)
|
1799 |
+
gr.Markdown(
|
1800 |
+
"⚠️ Currently, Number of generation > 1 could lead to out-of-memory"
|
1801 |
+
)
|
1802 |
+
with gr.Row():
|
1803 |
+
fix_n_generation = gr.Slider(
|
1804 |
+
label="Number of generations",
|
1805 |
+
value=1,
|
1806 |
+
minimum=1,
|
1807 |
+
maximum=FIX_MAX_N,
|
1808 |
+
step=1,
|
1809 |
+
randomize=False,
|
1810 |
+
interactive=True,
|
1811 |
+
)
|
1812 |
+
fix_seed = gr.Slider(
|
1813 |
+
label="Seed",
|
1814 |
+
value=42,
|
1815 |
+
minimum=0,
|
1816 |
+
maximum=10000,
|
1817 |
+
step=1,
|
1818 |
+
randomize=False,
|
1819 |
+
interactive=True,
|
1820 |
+
)
|
1821 |
+
fix_cfg = gr.Slider(
|
1822 |
+
label="Classifier free guidance scale",
|
1823 |
+
value=3.0,
|
1824 |
+
minimum=0.0,
|
1825 |
+
maximum=10.0,
|
1826 |
+
step=0.1,
|
1827 |
+
randomize=False,
|
1828 |
+
interactive=True,
|
1829 |
+
)
|
1830 |
+
fix_quality = gr.Slider(
|
1831 |
+
label="Quality",
|
1832 |
+
value=10,
|
1833 |
+
minimum=1,
|
1834 |
+
maximum=10,
|
1835 |
+
step=1,
|
1836 |
+
randomize=False,
|
1837 |
+
interactive=True,
|
1838 |
+
)
|
1839 |
+
fix_crop.change(enable_component, [fix_crop, fix_crop], fix_ref)
|
1840 |
+
fix_crop.change(resize_to_full, fix_crop, fix_ref)
|
1841 |
+
fix_ref.change(enable_component, [fix_ref, fix_ref], fix_finish_crop)
|
1842 |
+
fix_finish_crop.click(get_mask_inpaint, [fix_ref], [fix_inpaint_mask])
|
1843 |
+
# fix_finish_crop.click(lambda x: x["background"], [fix_ref], [fix_kp_right])
|
1844 |
+
# fix_finish_crop.click(lambda x: x["background"], [fix_ref], [fix_kp_left])
|
1845 |
+
fix_finish_crop.click(lambda x: x["background"], [fix_crop], [fix_original])
|
1846 |
+
fix_finish_crop.click(visualize_ref, [fix_crop, fix_ref], [fix_img])
|
1847 |
+
fix_img.change(lambda x: x, [fix_img], [fix_kp_right])
|
1848 |
+
fix_img.change(lambda x: x, [fix_img], [fix_kp_left])
|
1849 |
+
fix_inpaint_mask.change(
|
1850 |
+
enable_component, [fix_inpaint_mask, fix_inpaint_mask], fix_checkbox
|
1851 |
+
)
|
1852 |
+
fix_inpaint_mask.change(
|
1853 |
+
enable_component, [fix_inpaint_mask, fix_inpaint_mask], fix_kp_right
|
1854 |
+
)
|
1855 |
+
fix_inpaint_mask.change(
|
1856 |
+
enable_component, [fix_inpaint_mask, fix_inpaint_mask], fix_undo_right
|
1857 |
+
)
|
1858 |
+
fix_inpaint_mask.change(
|
1859 |
+
enable_component, [fix_inpaint_mask, fix_inpaint_mask], fix_reset_right
|
1860 |
+
)
|
1861 |
+
fix_inpaint_mask.change(
|
1862 |
+
enable_component, [fix_inpaint_mask, fix_inpaint_mask], fix_kp_left
|
1863 |
+
)
|
1864 |
+
fix_inpaint_mask.change(
|
1865 |
+
enable_component, [fix_inpaint_mask, fix_inpaint_mask], fix_undo_left
|
1866 |
+
)
|
1867 |
+
fix_inpaint_mask.change(
|
1868 |
+
enable_component, [fix_inpaint_mask, fix_inpaint_mask], fix_reset_left
|
1869 |
+
)
|
1870 |
+
fix_inpaint_mask.change(
|
1871 |
+
enable_component, [fix_inpaint_mask, fix_inpaint_mask], fix_ready
|
1872 |
+
)
|
1873 |
+
# fix_inpaint_mask.change(
|
1874 |
+
# enable_component, [fix_inpaint_mask, fix_inpaint_mask], fix_run
|
1875 |
+
# )
|
1876 |
+
fix_checkbox.select(
|
1877 |
+
set_visible,
|
1878 |
+
[fix_checkbox, fix_kpts, fix_img, fix_kp_right, fix_kp_left],
|
1879 |
+
[
|
1880 |
+
fix_kpts,
|
1881 |
+
fix_kp_right,
|
1882 |
+
fix_kp_left,
|
1883 |
+
fix_kp_right,
|
1884 |
+
fix_undo_right,
|
1885 |
+
fix_reset_right,
|
1886 |
+
fix_kp_left,
|
1887 |
+
fix_undo_left,
|
1888 |
+
fix_reset_left,
|
1889 |
+
fix_kp_r_info,
|
1890 |
+
fix_kp_l_info,
|
1891 |
+
],
|
1892 |
+
)
|
1893 |
+
fix_kp_right.select(
|
1894 |
+
get_kps, [fix_img, fix_kpts, gr.State("right")], [fix_kp_right, fix_kpts]
|
1895 |
+
)
|
1896 |
+
fix_undo_right.click(
|
1897 |
+
undo_kps, [fix_img, fix_kpts, gr.State("right")], [fix_kp_right, fix_kpts]
|
1898 |
+
)
|
1899 |
+
fix_reset_right.click(
|
1900 |
+
reset_kps, [fix_img, fix_kpts, gr.State("right")], [fix_kp_right, fix_kpts]
|
1901 |
+
)
|
1902 |
+
fix_kp_left.select(
|
1903 |
+
get_kps, [fix_img, fix_kpts, gr.State("left")], [fix_kp_left, fix_kpts]
|
1904 |
+
)
|
1905 |
+
fix_undo_left.click(
|
1906 |
+
undo_kps, [fix_img, fix_kpts, gr.State("left")], [fix_kp_left, fix_kpts]
|
1907 |
+
)
|
1908 |
+
fix_reset_left.click(
|
1909 |
+
reset_kps, [fix_img, fix_kpts, gr.State("left")], [fix_kp_left, fix_kpts]
|
1910 |
+
)
|
1911 |
+
# fix_kpts.change(check_keypoints, [fix_kpts], [fix_kp_right, fix_kp_left, fix_run])
|
1912 |
+
# fix_run.click(lambda x:gr.update(value=None), [], [fix_result, fix_result_pose])
|
1913 |
+
fix_vis_mask32.change(
|
1914 |
+
enable_component, [fix_vis_mask32, fix_vis_mask256], fix_run
|
1915 |
+
)
|
1916 |
+
# fix_vis_mask32.change(
|
1917 |
+
# enable_component, [fix_vis_mask32, fix_vis_mask256], fix_mask_size
|
1918 |
+
# )
|
1919 |
+
fix_ready.click(
|
1920 |
+
ready_sample,
|
1921 |
+
[fix_original, fix_inpaint_mask, fix_kpts],
|
1922 |
+
[
|
1923 |
+
fix_ref_cond,
|
1924 |
+
fix_target_cond,
|
1925 |
+
fix_latent,
|
1926 |
+
fix_inpaint_latent,
|
1927 |
+
fix_kpts_np,
|
1928 |
+
fix_vis_mask32,
|
1929 |
+
fix_vis_mask256,
|
1930 |
+
],
|
1931 |
+
)
|
1932 |
+
# fix_mask_size.select(
|
1933 |
+
# switch_mask_size, [fix_mask_size], [fix_vis_mask32, fix_vis_mask256]
|
1934 |
+
# )
|
1935 |
+
fix_run.click(
|
1936 |
+
sample_inpaint,
|
1937 |
+
[
|
1938 |
+
fix_ref_cond,
|
1939 |
+
fix_target_cond,
|
1940 |
+
fix_latent,
|
1941 |
+
fix_inpaint_latent,
|
1942 |
+
fix_kpts_np,
|
1943 |
+
fix_n_generation,
|
1944 |
+
fix_seed,
|
1945 |
+
fix_cfg,
|
1946 |
+
fix_quality,
|
1947 |
+
],
|
1948 |
+
[fix_result, fix_result_pose],
|
1949 |
+
)
|
1950 |
+
fix_clear.click(
|
1951 |
+
fix_clear_all,
|
1952 |
+
[],
|
1953 |
+
[
|
1954 |
+
fix_crop,
|
1955 |
+
fix_ref,
|
1956 |
+
fix_kp_right,
|
1957 |
+
fix_kp_left,
|
1958 |
+
fix_result,
|
1959 |
+
fix_result_pose,
|
1960 |
+
fix_inpaint_mask,
|
1961 |
+
fix_original,
|
1962 |
+
fix_img,
|
1963 |
+
fix_vis_mask32,
|
1964 |
+
fix_vis_mask256,
|
1965 |
+
fix_kpts,
|
1966 |
+
fix_kpts_np,
|
1967 |
+
fix_ref_cond,
|
1968 |
+
fix_target_cond,
|
1969 |
+
fix_latent,
|
1970 |
+
fix_inpaint_latent,
|
1971 |
+
fix_n_generation,
|
1972 |
+
# fix_size_memory,
|
1973 |
+
fix_seed,
|
1974 |
+
fix_cfg,
|
1975 |
+
fix_quality,
|
1976 |
+
],
|
1977 |
+
)
|
1978 |
+
|
1979 |
+
# gr.Markdown("""<p style="font-size: 25px; font-weight: bold;">Examples</p>""")
|
1980 |
+
# fix_dump_ex = gr.Image(value=None, label="Original Image", visible=False)
|
1981 |
+
# fix_dump_ex_masked = gr.Image(value=None, label="After Brushing", visible=False)
|
1982 |
+
# with gr.Column():
|
1983 |
+
# fix_example = gr.Examples(
|
1984 |
+
# fix_example_imgs,
|
1985 |
+
# # run_on_click=True,
|
1986 |
+
# # fn=parse_fix_example,
|
1987 |
+
# # inputs=[fix_dump_ex, fix_dump_ex_masked],
|
1988 |
+
# # outputs=[fix_original, fix_ref, fix_img, fix_inpaint_mask],
|
1989 |
+
# inputs=[fix_crop],
|
1990 |
+
# examples_per_page=20,
|
1991 |
+
# )
|
1992 |
+
|
1993 |
+
gr.Markdown("<h1>Citation</h1>")
|
1994 |
+
gr.Markdown(
|
1995 |
+
"""<p style="text-align: left;">If this was useful, please cite us! ❤️</p>"""
|
1996 |
+
)
|
1997 |
+
gr.Markdown(_CITE_)
|
1998 |
+
|
1999 |
+
print("Ready to launch..")
|
2000 |
+
_, _, shared_url = demo.queue().launch(
|
2001 |
+
share=True, server_name="0.0.0.0", server_port=7739
|
2002 |
+
)
|
2003 |
+
# demo.launch(share=True)
|
no_hands.png
ADDED
![]() |
Git LFS Details
|