import os import torch from dataclasses import dataclass import gradio as gr import numpy as np import matplotlib.pyplot as plt import cv2 import mediapipe as mp from torchvision.transforms import Compose, Resize, ToTensor, Normalize import vqvae import vit from typing import Literal from diffusion import create_diffusion from utils import scale_keypoint, keypoint_heatmap, check_keypoints_validity from segment_hoi import init_sam from io import BytesIO from PIL import Image import random from copy import deepcopy from typing import Optional import requests from huggingface_hub import hf_hub_download import spaces MAX_N = 6 FIX_MAX_N = 6 placeholder = cv2.cvtColor(cv2.imread("placeholder.png"), cv2.COLOR_BGR2RGB) NEW_MODEL = True MODEL_EPOCH = 6 REF_POSE_MASK = True def set_seed(seed): seed = int(seed) torch.manual_seed(seed) np.random.seed(seed) torch.cuda.manual_seed_all(seed) random.seed(seed) # if torch.cuda.is_available(): device = "cuda" # else: # device = "cpu" def remove_prefix(text, prefix): if text.startswith(prefix): return text[len(prefix) :] return text def unnormalize(x): return (((x + 1) / 2) * 255).astype(np.uint8) def visualize_hand(all_joints, img, side=["right", "left"], n_avail_joints=21): # Define the connections between joints for drawing lines and their corresponding colors connections = [ ((0, 1), "red"), ((1, 2), "green"), ((2, 3), "blue"), ((3, 4), "purple"), ((0, 5), "orange"), ((5, 6), "pink"), ((6, 7), "brown"), ((7, 8), "cyan"), ((0, 9), "yellow"), ((9, 10), "magenta"), ((10, 11), "lime"), ((11, 12), "indigo"), ((0, 13), "olive"), ((13, 14), "teal"), ((14, 15), "navy"), ((15, 16), "gray"), ((0, 17), "lavender"), ((17, 18), "silver"), ((18, 19), "maroon"), ((19, 20), "fuchsia"), ] H, W, C = img.shape # Create a figure and axis plt.figure() ax = plt.gca() # Plot joints as points ax.imshow(img) start_is = [] if "right" in side: start_is.append(0) if "left" in side: start_is.append(21) for start_i in start_is: joints = all_joints[start_i : start_i + n_avail_joints] if len(joints) == 1: ax.scatter(joints[0][0], joints[0][1], color="red", s=10) else: for connection, color in connections[: len(joints) - 1]: joint1 = joints[connection[0]] joint2 = joints[connection[1]] ax.plot([joint1[0], joint2[0]], [joint1[1], joint2[1]], color=color) ax.set_xlim([0, W]) ax.set_ylim([0, H]) ax.grid(False) ax.set_axis_off() ax.invert_yaxis() # plt.subplots_adjust(wspace=0.01) # plt.show() buf = BytesIO() plt.savefig(buf, format="png", bbox_inches="tight", pad_inches=0) plt.close() # Convert BytesIO object to numpy array buf.seek(0) img_pil = Image.open(buf) img_pil = img_pil.resize((H, W)) numpy_img = np.array(img_pil) return numpy_img def mask_image(image, mask, color=[0, 0, 0], alpha=0.6, transparent=True): """Overlay mask on image for visualization purpose. Args: image (H, W, 3) or (H, W): input image mask (H, W): mask to be overlaid color: the color of overlaid mask alpha: the transparency of the mask """ out = deepcopy(image) img = deepcopy(image) img[mask == 1] = color if transparent: out = cv2.addWeighted(img, alpha, out, 1 - alpha, 0, out) else: out = img return out def scale_keypoint(keypoint, original_size, target_size): """Scale a keypoint based on the resizing of the image.""" keypoint_copy = keypoint.copy() keypoint_copy[:, 0] *= target_size[0] / original_size[0] keypoint_copy[:, 1] *= target_size[1] / original_size[1] return keypoint_copy print("Configure...") @dataclass class HandDiffOpts: run_name: str = "ViT_256_handmask_heatmap_nvs_b25_lr1e-5" sd_path: str = "/users/kchen157/scratch/weights/SD/sd-v1-4.ckpt" log_dir: str = "/users/kchen157/scratch/log" data_root: str = "/users/kchen157/data/users/kchen157/dataset/handdiff" image_size: tuple = (256, 256) latent_size: tuple = (32, 32) latent_dim: int = 4 mask_bg: bool = False kpts_form: str = "heatmap" n_keypoints: int = 42 n_mask: int = 1 noise_steps: int = 1000 test_sampling_steps: int = 250 ddim_steps: int = 100 ddim_discretize: str = "uniform" ddim_eta: float = 0.0 beta_start: float = 8.5e-4 beta_end: float = 0.012 latent_scaling_factor: float = 0.18215 cfg_pose: float = 5.0 cfg_appearance: float = 3.5 batch_size: int = 25 lr: float = 1e-5 max_epochs: int = 500 log_every_n_steps: int = 100 limit_val_batches: int = 1 n_gpu: int = 8 num_nodes: int = 1 precision: str = "16-mixed" profiler: str = "simple" swa_epoch_start: int = 10 swa_lrs: float = 1e-3 num_workers: int = 10 n_val_samples: int = 4 # load models token = os.getenv("HF_TOKEN") if NEW_MODEL: opts = HandDiffOpts() if MODEL_EPOCH == 7: model_path = './DINO_EMA_11M_b50_lr1e-5_epoch7_step380k.ckpt' elif MODEL_EPOCH == 6: # model_path = "./DINO_EMA_11M_b50_lr1e-5_epoch6_step320k.ckpt" model_path = hf_hub_download(repo_id="Chaerin5/FoundHand-weights", filename="DINO_EMA_11M_b50_lr1e-5_epoch6_step320k.ckpt", token=token) elif MODEL_EPOCH == 4: model_path = "./DINO_EMA_11M_b50_lr1e-5_epoch4_step210k.ckpt" elif MODEL_EPOCH == 10: model_path = "./DINO_EMA_11M_b50_lr1e-5_epoch10_step550k.ckpt" else: raise ValueError(f"new model epoch should be either 6 or 7, got {MODEL_EPOCH}") # vae_path = './vae-ft-mse-840000-ema-pruned.ckpt' vae_path = hf_hub_download(repo_id="Chaerin5/FoundHand-weights", filename="vae-ft-mse-840000-ema-pruned.ckpt", token=token) # sd_path = './sd-v1-4.ckpt' print('Load diffusion model...') diffusion = create_diffusion(str(opts.test_sampling_steps)) model = vit.DiT_XL_2( input_size=opts.latent_size[0], latent_dim=opts.latent_dim, in_channels=opts.latent_dim+opts.n_keypoints+opts.n_mask, learn_sigma=True, ).to(device) # ckpt_state_dict = torch.load(model_path)['model_state_dict'] ckpt_state_dict = torch.load(model_path, map_location='cpu')['ema_state_dict'] missing_keys, extra_keys = model.load_state_dict(ckpt_state_dict, strict=False) model = model.to(device) model.eval() print(missing_keys, extra_keys) assert len(missing_keys) == 0 vae_state_dict = torch.load(vae_path, map_location='cpu')['state_dict'] print(f"vae_state_dict encoder dtype: {vae_state_dict['encoder.conv_in.weight'].dtype}") autoencoder = vqvae.create_model(3, 3, opts.latent_dim).eval().requires_grad_(False) print(f"autoencoder encoder dtype: {next(autoencoder.encoder.parameters()).dtype}") print(f"encoder before load_state_dict parameters min: {min([p.min() for p in autoencoder.encoder.parameters()])}") print(f"encoder before load_state_dict parameters max: {max([p.max() for p in autoencoder.encoder.parameters()])}") missing_keys, extra_keys = autoencoder.load_state_dict(vae_state_dict, strict=False) print(f"encoder after load_state_dict parameters min: {min([p.min() for p in autoencoder.encoder.parameters()])}") print(f"encoder after load_state_dict parameters max: {max([p.max() for p in autoencoder.encoder.parameters()])}") autoencoder = autoencoder.to(device) autoencoder.eval() print(f"encoder after eval() min: {min([p.min() for p in autoencoder.encoder.parameters()])}") print(f"encoder after eval() max: {max([p.max() for p in autoencoder.encoder.parameters()])}") print(f"autoencoder encoder after eval() dtype: {next(autoencoder.encoder.parameters()).dtype}") assert len(missing_keys) == 0 # else: # opts = HandDiffOpts() # model_path = './finetune_epoch=5-step=130000.ckpt' # sd_path = './sd-v1-4.ckpt' # print('Load diffusion model...') # diffusion = create_diffusion(str(opts.test_sampling_steps)) # model = vit.DiT_XL_2( # input_size=opts.latent_size[0], # latent_dim=opts.latent_dim, # in_channels=opts.latent_dim+opts.n_keypoints+opts.n_mask, # learn_sigma=True, # ).to(device) # ckpt_state_dict = torch.load(model_path)['state_dict'] # dit_state_dict = {remove_prefix(k, 'diffusion_backbone.'): v for k, v in ckpt_state_dict.items() if k.startswith('diffusion_backbone')} # vae_state_dict = {remove_prefix(k, 'autoencoder.'): v for k, v in ckpt_state_dict.items() if k.startswith('autoencoder')} # missing_keys, extra_keys = model.load_state_dict(dit_state_dict, strict=False) # model.eval() # assert len(missing_keys) == 0 and len(extra_keys) == 0 # autoencoder = vqvae.create_model(3, 3, opts.latent_dim).eval().requires_grad_(False).to(device) # missing_keys, extra_keys = autoencoder.load_state_dict(vae_state_dict, strict=False) # autoencoder.eval() # assert len(missing_keys) == 0 and len(extra_keys) == 0 sam_path = hf_hub_download(repo_id="Chaerin5/FoundHand-weights", filename="sam_vit_h_4b8939.pth", token=token) sam_predictor = init_sam(ckpt_path=sam_path, device='cpu') print("Mediapipe hand detector and SAM ready...") mp_hands = mp.solutions.hands hands = mp_hands.Hands( static_image_mode=True, # Use False if image is part of a video stream max_num_hands=2, # Maximum number of hands to detect min_detection_confidence=0.1, ) def prepare_ref_anno(ref): if ref is None: return ( None, None, None, None, None, ) missing_keys, extra_keys = autoencoder.load_state_dict(vae_state_dict, strict=False) img = ref["composite"][..., :3] img = cv2.resize(img, opts.image_size, interpolation=cv2.INTER_AREA) keypts = np.zeros((42, 2)) mp_pose = hands.process(img) if mp_pose.multi_hand_landmarks: # handedness is flipped assuming the input image is mirrored in MediaPipe for hand_landmarks, handedness in zip( mp_pose.multi_hand_landmarks, mp_pose.multi_handedness ): # actually right hand if handedness.classification[0].label == "Left": start_idx = 0 # actually left hand elif handedness.classification[0].label == "Right": start_idx = 21 for i, landmark in enumerate(hand_landmarks.landmark): keypts[start_idx + i] = [ landmark.x * opts.image_size[1], landmark.y * opts.image_size[0], ] print(f"keypts.max(): {keypts.max()}, keypts.min(): {keypts.min()}") return img, keypts else: return img, None def get_ref_anno(img, keypts): if keypts is None: no_hands = cv2.resize(np.array(Image.open("no_hands.png"))[..., :3], (LENGTH, LENGTH)) return None, no_hands, None if isinstance(keypts, list): if len(keypts[0]) == 0: keypts[0] = np.zeros((21, 2)) elif len(keypts[0]) == 21: keypts[0] = np.array(keypts[0], dtype=np.float32) else: gr.Info("Number of right hand keypoints should be either 0 or 21.") return None, None, None if len(keypts[1]) == 0: keypts[1] = np.zeros((21, 2)) elif len(keypts[1]) == 21: keypts[1] = np.array(keypts[1], dtype=np.float32) else: gr.Info("Number of left hand keypoints should be either 0 or 21.") return None, None, None keypts = np.concatenate(keypts, axis=0) if REF_POSE_MASK: sam_predictor.set_image(img) if keypts[0].sum() != 0 and keypts[21].sum() != 0: input_point = np.array([keypts[0], keypts[21]]) input_label = np.array([1, 1]) elif keypts[0].sum() != 0: input_point = np.array(keypts[:1]) input_label = np.array([1]) elif keypts[21].sum() != 0: input_point = np.array(keypts[21:22]) input_label = np.array([1]) masks, _, _ = sam_predictor.predict( point_coords=input_point, point_labels=input_label, multimask_output=False, ) hand_mask = masks[0] masked_img = img * hand_mask[..., None] + 255 * (1 - hand_mask[..., None]) ref_pose = visualize_hand(keypts, masked_img) else: hand_mask = np.zeros_like(img[:,:, 0]) ref_pose = np.zeros_like(img) def make_ref_cond( img, keypts, hand_mask, device="cuda", target_size=(256, 256), latent_size=(32, 32), ): image_transform = Compose( [ ToTensor(), Resize(target_size), Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), ] ) image = image_transform(img) # .to(device) kpts_valid = check_keypoints_validity(keypts, target_size) heatmaps = torch.tensor( keypoint_heatmap( scale_keypoint(keypts, target_size, latent_size), latent_size, var=1.0 ) * kpts_valid[:, None, None], dtype=torch.float, # device=device )[None, ...] mask = torch.tensor( cv2.resize( hand_mask.astype(int), dsize=latent_size, interpolation=cv2.INTER_NEAREST, ), dtype=torch.float, # device=device, ).unsqueeze(0)[None, ...] return image[None, ...], heatmaps, mask print(f"img.max(): {img.max()}, img.min(): {img.min()}") image, heatmaps, mask = make_ref_cond( img, keypts, hand_mask, device="cuda", target_size=opts.image_size, latent_size=opts.latent_size, ) print(f"image.max(): {image.max()}, image.min(): {image.min()}") print(f"opts.latent_scaling_factor: {opts.latent_scaling_factor}") print(f"autoencoder encoder before operating max: {min([p.min() for p in autoencoder.encoder.parameters()])}") print(f"autoencoder encoder before operating min: {max([p.max() for p in autoencoder.encoder.parameters()])}") print(f"autoencoder encoder before operating dtype: {next(autoencoder.encoder.parameters()).dtype}") latent = opts.latent_scaling_factor * autoencoder.encode(image).sample() print(f"latent.max(): {latent.max()}, latent.min(): {latent.min()}") if not REF_POSE_MASK: heatmaps = torch.zeros_like(heatmaps) mask = torch.zeros_like(mask) print(f"heatmaps.max(): {heatmaps.max()}, heatmaps.min(): {heatmaps.min()}") print(f"mask.max(): {mask.max()}, mask.min(): {mask.min()}") ref_cond = torch.cat([latent, heatmaps, mask], 1) print(f"ref_cond.max(): {ref_cond.max()}, ref_cond.min(): {ref_cond.min()}") return img, ref_pose, ref_cond def get_target_anno(target): if target is None: return ( gr.State.update(value=None), gr.Image.update(value=None), gr.State.update(value=None), gr.State.update(value=None), ) pose_img = target["composite"][..., :3] pose_img = cv2.resize(pose_img, opts.image_size, interpolation=cv2.INTER_AREA) # detect keypoints mp_pose = hands.process(pose_img) target_keypts = np.zeros((42, 2)) detected = np.array([0, 0]) start_idx = 0 if mp_pose.multi_hand_landmarks: # handedness is flipped assuming the input image is mirrored in MediaPipe for hand_landmarks, handedness in zip( mp_pose.multi_hand_landmarks, mp_pose.multi_handedness ): # actually right hand if handedness.classification[0].label == "Left": start_idx = 0 detected[0] = 1 # actually left hand elif handedness.classification[0].label == "Right": start_idx = 21 detected[1] = 1 for i, landmark in enumerate(hand_landmarks.landmark): target_keypts[start_idx + i] = [ landmark.x * opts.image_size[1], landmark.y * opts.image_size[0], ] target_pose = visualize_hand(target_keypts, pose_img) kpts_valid = check_keypoints_validity(target_keypts, opts.image_size) target_heatmaps = torch.tensor( keypoint_heatmap( scale_keypoint(target_keypts, opts.image_size, opts.latent_size), opts.latent_size, var=1.0, ) * kpts_valid[:, None, None], dtype=torch.float, # device=device, )[None, ...] target_cond = torch.cat( [target_heatmaps, torch.zeros_like(target_heatmaps)[:, :1]], 1 ) else: raise gr.Error("No hands detected in the target image.") return pose_img, target_pose, target_cond, target_keypts def get_mask_inpaint(ref): inpaint_mask = np.array(ref["layers"][0])[..., -1] inpaint_mask = cv2.resize( inpaint_mask, opts.image_size, interpolation=cv2.INTER_AREA ) inpaint_mask = (inpaint_mask >= 128).astype(np.uint8) return inpaint_mask def visualize_ref(crop, brush): if crop is None or brush is None: return None inpainted = brush["layers"][0][..., -1] img = crop["background"][..., :3] img = cv2.resize(img, inpainted.shape[::-1], interpolation=cv2.INTER_AREA) mask = inpainted < 128 # img = img.astype(np.int32) # img[mask, :] = img[mask, :] - 50 # img[np.any(img<0, axis=-1)]=0 # img = img.astype(np.uint8) img = mask_image(img, mask) return img def get_kps(img, keypoints, side: Literal["right", "left"], evt: gr.SelectData): if keypoints is None: keypoints = [[], []] kps = np.zeros((42, 2)) if side == "right": if len(keypoints[0]) == 21: gr.Info("21 keypoints for right hand already selected. Try reset if something looks wrong.") else: keypoints[0].append(list(evt.index)) len_kps = len(keypoints[0]) kps[:len_kps] = np.array(keypoints[0]) elif side == "left": if len(keypoints[1]) == 21: gr.Info("21 keypoints for left hand already selected. Try reset if something looks wrong.") else: keypoints[1].append(list(evt.index)) len_kps = len(keypoints[1]) kps[21 : 21 + len_kps] = np.array(keypoints[1]) vis_hand = visualize_hand(kps, img, side, len_kps) return vis_hand, keypoints def undo_kps(img, keypoints, side: Literal["right", "left"]): if keypoints is None: return img, None kps = np.zeros((42, 2)) if side == "right": if len(keypoints[0]) == 0: return img, keypoints keypoints[0].pop() len_kps = len(keypoints[0]) kps[:len_kps] = np.array(keypoints[0]) elif side == "left": if len(keypoints[1]) == 0: return img, keypoints keypoints[1].pop() len_kps = len(keypoints[1]) kps[21 : 21 + len_kps] = np.array(keypoints[1]) vis_hand = visualize_hand(kps, img, side, len_kps) return vis_hand, keypoints def reset_kps(img, keypoints, side: Literal["right", "left"]): if keypoints is None: return img, None if side == "right": keypoints[0] = [] elif side == "left": keypoints[1] = [] return img, keypoints @spaces.GPU(duration=60) def sample_diff(ref_cond, target_cond, target_keypts, num_gen, seed, cfg): set_seed(seed) z = torch.randn( (num_gen, opts.latent_dim, opts.latent_size[0], opts.latent_size[1]), device=device, ) print(f"z.device: {z.device}") target_cond = target_cond.repeat(num_gen, 1, 1, 1).to(z.device) ref_cond = ref_cond.repeat(num_gen, 1, 1, 1).to(z.device) print(f"target_cond.max(): {target_cond.max()}, target_cond.min(): {target_cond.min()}") print(f"ref_cond.max(): {ref_cond.max()}, ref_cond.min(): {ref_cond.min()}") # novel view synthesis mode = off nvs = torch.zeros(num_gen, dtype=torch.int, device=device) z = torch.cat([z, z], 0) model_kwargs = dict( target_cond=torch.cat([target_cond, torch.zeros_like(target_cond)]), ref_cond=torch.cat([ref_cond, torch.zeros_like(ref_cond)]), nvs=torch.cat([nvs, 2 * torch.ones_like(nvs)]), cfg_scale=cfg, ) samples, _ = diffusion.p_sample_loop( model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device, ).chunk(2) sampled_images = autoencoder.decode(samples / opts.latent_scaling_factor) sampled_images = torch.clamp(sampled_images, min=-1.0, max=1.0) sampled_images = unnormalize(sampled_images.permute(0, 2, 3, 1).cpu().numpy()) results = [] results_pose = [] for i in range(MAX_N): if i < num_gen: results.append(sampled_images[i]) results_pose.append(visualize_hand(target_keypts, sampled_images[i])) else: results.append(placeholder) results_pose.append(placeholder) print(f"results[0].max(): {results[0].max()}") return results, results_pose @spaces.GPU(duration=120) def ready_sample(img_ori, inpaint_mask, keypts): img = cv2.resize(img_ori[..., :3], opts.image_size, interpolation=cv2.INTER_AREA) sam_predictor.set_image(img) if len(keypts[0]) == 0: keypts[0] = np.zeros((21, 2)) elif len(keypts[0]) == 21: keypts[0] = np.array(keypts[0], dtype=np.float32) else: gr.Info("Number of right hand keypoints should be either 0 or 21.") return None, None if len(keypts[1]) == 0: keypts[1] = np.zeros((21, 2)) elif len(keypts[1]) == 21: keypts[1] = np.array(keypts[1], dtype=np.float32) else: gr.Info("Number of left hand keypoints should be either 0 or 21.") return None, None keypts = np.concatenate(keypts, axis=0) keypts = scale_keypoint(keypts, (LENGTH, LENGTH), opts.image_size) box_shift_ratio = 0.5 box_size_factor = 1.2 if keypts[0].sum() != 0 and keypts[21].sum() != 0: input_point = np.array(keypts) input_box = np.stack([keypts.min(axis=0), keypts.max(axis=0)]) elif keypts[0].sum() != 0: input_point = np.array(keypts[:21]) input_box = np.stack([keypts[:21].min(axis=0), keypts[:21].max(axis=0)]) elif keypts[21].sum() != 0: input_point = np.array(keypts[21:]) input_box = np.stack([keypts[21:].min(axis=0), keypts[21:].max(axis=0)]) else: raise ValueError( "Something wrong. If no hand detected, it should not reach here." ) input_label = np.ones_like(input_point[:, 0]).astype(np.int32) box_trans = input_box[0] * box_shift_ratio + input_box[1] * (1 - box_shift_ratio) input_box = ((input_box - box_trans) * box_size_factor + box_trans).reshape(-1) masks, _, _ = sam_predictor.predict( point_coords=input_point, point_labels=input_label, box=input_box[None, :], multimask_output=False, ) hand_mask = masks[0] inpaint_latent_mask = torch.tensor( cv2.resize( inpaint_mask, dsize=opts.latent_size, interpolation=cv2.INTER_NEAREST ), dtype=torch.float, # device=device, ).unsqueeze(0)[None, ...] def make_ref_cond( img, keypts, hand_mask, device=device, target_size=(256, 256), latent_size=(32, 32), ): image_transform = Compose( [ ToTensor(), Resize(target_size), Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), ] ) image = image_transform(img) kpts_valid = check_keypoints_validity(keypts, target_size) heatmaps = torch.tensor( keypoint_heatmap( scale_keypoint(keypts, target_size, latent_size), latent_size, var=1.0 ) * kpts_valid[:, None, None], dtype=torch.float, # device=device, )[None, ...] mask = torch.tensor( cv2.resize( hand_mask.astype(int), dsize=latent_size, interpolation=cv2.INTER_NEAREST, ), dtype=torch.float, # device=device, ).unsqueeze(0)[None, ...] return image[None, ...], heatmaps, mask image, heatmaps, mask = make_ref_cond( img, keypts, hand_mask * (1 - inpaint_mask), device=device, target_size=opts.image_size, latent_size=opts.latent_size, ) latent = opts.latent_scaling_factor * autoencoder.encode(image).sample() target_cond = torch.cat([heatmaps, torch.zeros_like(mask)], 1) ref_cond = torch.cat([latent, heatmaps, mask], 1) ref_cond = torch.zeros_like(ref_cond) img32 = cv2.resize(img, opts.latent_size, interpolation=cv2.INTER_NEAREST) assert mask.max() == 1 vis_mask32 = mask_image( img32, inpaint_latent_mask[0,0].cpu().numpy(), (255,255,255), transparent=False ).astype(np.uint8) # 1.0 - mask[0, 0].cpu().numpy() assert np.unique(inpaint_mask).shape[0] <= 2 assert hand_mask.dtype == bool mask256 = inpaint_mask # hand_mask * (1 - inpaint_mask) vis_mask256 = mask_image(img, mask256, (255,255,255), transparent=False).astype( np.uint8 ) # 1 - mask256 return ( ref_cond, target_cond, latent, inpaint_latent_mask, keypts, vis_mask32, vis_mask256, ) def switch_mask_size(radio): if radio == "256x256": out = (gr.update(visible=False), gr.update(visible=True)) elif radio == "latent size (32x32)": out = (gr.update(visible=True), gr.update(visible=False)) return out @spaces.GPU(duration=300) def sample_inpaint( ref_cond, target_cond, latent, inpaint_latent_mask, keypts, num_gen, seed, cfg, quality, ): set_seed(seed) N = num_gen jump_length = 10 jump_n_sample = quality cfg_scale = cfg z = torch.randn( (N, opts.latent_dim, opts.latent_size[0], opts.latent_size[1]), device=device ) target_cond_N = target_cond.repeat(N, 1, 1, 1).to(z.device) ref_cond_N = ref_cond.repeat(N, 1, 1, 1).to(z.device) # novel view synthesis mode = off nvs = torch.zeros(N, dtype=torch.int, device=device) z = torch.cat([z, z], 0) model_kwargs = dict( target_cond=torch.cat([target_cond_N, torch.zeros_like(target_cond_N)]), ref_cond=torch.cat([ref_cond_N, torch.zeros_like(ref_cond_N)]), nvs=torch.cat([nvs, 2 * torch.ones_like(nvs)]), cfg_scale=cfg_scale, ) samples, _ = diffusion.inpaint_p_sample_loop( model.forward_with_cfg, z.shape, latent.to(z.device), inpaint_latent_mask.to(z.device), z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=z.device, jump_length=jump_length, jump_n_sample=jump_n_sample, ).chunk(2) sampled_images = autoencoder.decode(samples / opts.latent_scaling_factor) sampled_images = torch.clamp(sampled_images, min=-1.0, max=1.0) sampled_images = unnormalize(sampled_images.permute(0, 2, 3, 1).cpu().numpy()) # visualize results = [] results_pose = [] for i in range(FIX_MAX_N): if i < num_gen: results.append(sampled_images[i]) results_pose.append(visualize_hand(keypts, sampled_images[i])) else: results.append(placeholder) results_pose.append(placeholder) return results, results_pose def flip_hand( img, pose_img, cond: Optional[torch.Tensor], keypts: Optional[torch.Tensor] = None, pose_manual_img = None, manual_kp_right=None, manual_kp_left=None ): if cond is None: # clear clicked return None, None, None, None img["composite"] = img["composite"][:, ::-1, :] img["background"] = img["background"][:, ::-1, :] img["layers"] = [layer[:, ::-1, :] for layer in img["layers"]] pose_img = pose_img[:, ::-1, :] cond = cond.flip(-1) if keypts is not None: # cond is target_cond if keypts[:21, :].sum() != 0: keypts[:21, 0] = opts.image_size[1] - keypts[:21, 0] # keypts[:21, 1] = opts.image_size[0] - keypts[:21, 1] if keypts[21:, :].sum() != 0: keypts[21:, 0] = opts.image_size[1] - keypts[21:, 0] # keypts[21:, 1] = opts.image_size[0] - keypts[21:, 1] if pose_manual_img is not None: pose_manual_img = pose_manual_img[:, ::-1, :] manual_kp_right = manual_kp_right[:, ::-1, :] manual_kp_left = manual_kp_left[:, ::-1, :] return img, pose_img, cond, keypts, pose_manual_img, manual_kp_right, manual_kp_left def resize_to_full(img): img["background"] = cv2.resize(img["background"], (LENGTH, LENGTH)) img["composite"] = cv2.resize(img["composite"], (LENGTH, LENGTH)) img["layers"] = [cv2.resize(layer, (LENGTH, LENGTH)) for layer in img["layers"]] return img def clear_all(): return ( None, None, None, None, None, False, None, None, False, None, None, None, None, None, None, None, 1, 42, 3.0, gr.update(interactive=False), [] ) def fix_clear_all(): return ( None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, 1, # (0,0), 42, 3.0, 10, ) def enable_component(image1, image2): if image1 is None or image2 is None: return gr.update(interactive=False) if "background" in image1 and "layers" in image1 and "composite" in image1: if ( image1["background"].sum() == 0 and (sum([im.sum() for im in image1["layers"]]) == 0) and image1["composite"].sum() == 0 ): return gr.update(interactive=False) if "background" in image2 and "layers" in image2 and "composite" in image2: if ( image2["background"].sum() == 0 and (sum([im.sum() for im in image2["layers"]]) == 0) and image2["composite"].sum() == 0 ): return gr.update(interactive=False) return gr.update(interactive=True) def set_visible(checkbox, kpts, img_clean, img_pose_right, img_pose_left, done=None, done_info=None): if kpts is None: kpts = [[], []] if "Right hand" not in checkbox: kpts[0] = [] vis_right = img_clean update_right = gr.update(visible=False) update_r_info = gr.update(visible=False) else: vis_right = img_pose_right update_right = gr.update(visible=True) update_r_info = gr.update(visible=True) if "Left hand" not in checkbox: kpts[1] = [] vis_left = img_clean update_left = gr.update(visible=False) update_l_info = gr.update(visible=False) else: vis_left = img_pose_left update_left = gr.update(visible=True) update_l_info = gr.update(visible=True) ret = [ kpts, vis_right, vis_left, update_right, update_right, update_right, update_left, update_left, update_left, update_r_info, update_l_info, ] if done is not None: if not checkbox: ret.append(gr.update(visible=False)) ret.append(gr.update(visible=False)) else: ret.append(gr.update(visible=True)) ret.append(gr.update(visible=True)) return tuple(ret) def set_unvisible(): return ( gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) ) def set_no_hands(decider, component): if decider is None: no_hands = cv2.resize(np.array(Image.open("no_hands.png"))[..., :3], (LENGTH, LENGTH)) return no_hands else: return component def visible_component(decider, component): if decider is not None: update_component = gr.update(visible=True) else: update_component = gr.update(visible=False) return update_component def unvisible_component(decider, component): if decider is not None: update_component = gr.update(visible=False) else: update_component = gr.update(visible=True) return update_component # def make_change(decider, state): # ''' # if decider is not None, change the state's value. True/False does not matter. # ''' # if decider is not None: # if state: # state = False # else: # state = True # return state # else: # return state LENGTH = 480 example_ref_imgs = [ [ "sample_images/sample1.jpg", ], [ "sample_images/sample2.jpg", ], [ "sample_images/sample3.jpg", ], [ "sample_images/sample4.jpg", ], # [ # "sample_images/sample5.jpg", # ], [ "sample_images/sample6.jpg", ], # [ # "sample_images/sample7.jpg", # ], # [ # "sample_images/sample8.jpg", # ], # [ # "sample_images/sample9.jpg", # ], # [ # "sample_images/sample10.jpg", # ], # [ # "sample_images/sample11.jpg", # ], # ["pose_images/pose1.jpg"], # ["pose_images/pose2.jpg"], # ["pose_images/pose3.jpg"], # ["pose_images/pose4.jpg"], # ["pose_images/pose5.jpg"], # ["pose_images/pose6.jpg"], # ["pose_images/pose7.jpg"], # ["pose_images/pose8.jpg"], ] example_target_imgs = [ # [ # "sample_images/sample1.jpg", # ], # [ # "sample_images/sample2.jpg", # ], # [ # "sample_images/sample3.jpg", # ], # [ # "sample_images/sample4.jpg", # ], [ "sample_images/sample5.jpg", ], # [ # "sample_images/sample6.jpg", # ], # [ # "sample_images/sample7.jpg", # ], # [ # "sample_images/sample8.jpg", # ], [ "sample_images/sample9.jpg", ], [ "sample_images/sample10.jpg", ], [ "sample_images/sample11.jpg", ], ["pose_images/pose1.jpg"], # ["pose_images/pose2.jpg"], # ["pose_images/pose3.jpg"], # ["pose_images/pose4.jpg"], # ["pose_images/pose5.jpg"], # ["pose_images/pose6.jpg"], # ["pose_images/pose7.jpg"], # ["pose_images/pose8.jpg"], ] fix_example_imgs = [ ["bad_hands/1.jpg"], # "bad_hands/1_mask.jpg"], # ["bad_hands/2.jpg"], # "bad_hands/2_mask.jpg"], ["bad_hands/3.jpg"], # "bad_hands/3_mask.jpg"], # ["bad_hands/4.jpg"], # "bad_hands/4_mask.jpg"], ["bad_hands/5.jpg"], # "bad_hands/5_mask.jpg"], ["bad_hands/6.jpg"], # "bad_hands/6_mask.jpg"], ["bad_hands/7.jpg"], # "bad_hands/7_mask.jpg"], # ["bad_hands/8.jpg"], # "bad_hands/8_mask.jpg"], # ["bad_hands/9.jpg"], # "bad_hands/9_mask.jpg"], # ["bad_hands/10.jpg"], # "bad_hands/10_mask.jpg"], # ["bad_hands/11.jpg"], # "bad_hands/11_mask.jpg"], # ["bad_hands/12.jpg"], # "bad_hands/12_mask.jpg"], # ["bad_hands/13.jpg"], # "bad_hands/13_mask.jpg"], ["bad_hands/14.jpg"], ["bad_hands/15.jpg"], ] custom_css = """ .gradio-container .examples img { width: 240px !important; height: 240px !important; } """ _HEADER_ = ''' <div style="text-align: center;"> <h1><b>FoundHand: Large-Scale Domain-Specific Learning for Controllable Hand Image Generation</b></h1> <h2 style="color: #777777;">CVPR 2025</h2> <style> .link-spacing { margin-right: 20px; } </style> <p style="font-size: 15px;"> <span style="display: inline-block; margin-right: 30px;">Brown University</span> <span style="display: inline-block;">Meta Reality Labs</span> </p> <h3> <a href='https://arxiv.org/abs/2412.02690' target='_blank' class="link-spacing">Paper</a> <a href='https://ivl.cs.brown.edu/research/foundhand.html' target='_blank' class="link-spacing">Project Page</a> <a href='' target='_blank' class="link-spacing">Code</a> <a href='' target='_blank'>Model Weights</a> </h3> <p>Below are two important abilities of our model. First, we can <b>edit hand poses</b> given two hand images - one is the image to edit, and the other one provides target hand pose. Second, we can automatically <b>fix malformed hand images</b>, following the user-provided target hand pose and area to fix.</p> </div> ''' _CITE_ = r""" ``` @article{chen2024foundhand, title={FoundHand: Large-Scale Domain-Specific Learning for Controllable Hand Image Generation}, author={Chen, Kefan and Min, Chaerin and Zhang, Linguang and Hampali, Shreyas and Keskin, Cem and Sridhar, Srinath}, journal={arXiv preprint arXiv:2412.02690}, year={2024} } ``` """ with gr.Blocks(css=custom_css, theme="soft") as demo: gr.Markdown(_HEADER_) with gr.Tab("Edit Hand Poses"): ref_img = gr.State(value=None) ref_im_raw = gr.State(value=None) ref_kp_raw = gr.State(value=0) ref_kp_got = gr.State(value=None) dump = gr.State(value=None) ref_cond = gr.State(value=None) ref_manual_cond = gr.State(value=None) ref_auto_cond = gr.State(value=None) keypts = gr.State(value=None) target_img = gr.State(value=None) target_cond = gr.State(value=None) target_keypts = gr.State(value=None) dump = gr.State(value=None) with gr.Row(): with gr.Column(): gr.Markdown( """<p style="text-align: center; font-size: 20px; font-weight: bold;">1. Upload a hand image to edit 📥</p>""" ) gr.Markdown( """<p style="text-align: center;">① Optionally crop the image</p>""" ) ref = gr.ImageEditor( type="numpy", label="Reference", show_label=True, height=LENGTH, width=LENGTH, brush=False, layers=False, crop_size="1:1", ) gr.Examples(example_ref_imgs, [ref], examples_per_page=20) gr.Markdown( """<p style="text-align: center;">② Hit the "Finish Cropping" button to get hand pose</p>""" ) ref_finish_crop = gr.Button(value="Finish Cropping", interactive=False) with gr.Tab("Automatic hand keypoints"): ref_pose = gr.Image( type="numpy", label="Reference Pose", show_label=True, height=LENGTH, width=LENGTH, interactive=False, ) ref_use_auto = gr.Button(value="Click here to use automatic, not manual", interactive=False, visible=True) with gr.Tab("Manual hand keypoints"): ref_manual_checkbox_info = gr.Markdown( """<p style="text-align: center;"><b>Step 1.</b> Tell us if this is right, left, or both hands.</p>""", visible=True, ) ref_manual_checkbox = gr.CheckboxGroup( ["Right hand", "Left hand"], show_label=False, visible=True, interactive=True, ) ref_manual_kp_r_info = gr.Markdown( """<p style="text-align: center;"><b>Step 2.</b> Click on image to provide hand keypoints for <b>right</b> hand. See \"OpenPose Keypoint Convention\" for guidance.</p>""", visible=False, ) ref_manual_kp_right = gr.Image( type="numpy", label="Keypoint Selection (right hand)", show_label=True, height=LENGTH, width=LENGTH, interactive=False, visible=False, sources=[], ) with gr.Row(): ref_manual_undo_right = gr.Button( value="Undo", interactive=True, visible=False ) ref_manual_reset_right = gr.Button( value="Reset", interactive=True, visible=False ) ref_manual_kp_l_info = gr.Markdown( """<p style="text-align: center;"><b>Step 2.</b> Click on image to provide hand keypoints for <b>left</b> hand. See \"OpenPose keypoint convention\" for guidance.</p>""", visible=False ) ref_manual_kp_left = gr.Image( type="numpy", label="Keypoint Selection (left hand)", show_label=True, height=LENGTH, width=LENGTH, interactive=False, visible=False, sources=[], ) with gr.Row(): ref_manual_undo_left = gr.Button( value="Undo", interactive=True, visible=False ) ref_manual_reset_left = gr.Button( value="Reset", interactive=True, visible=False ) ref_manual_done_info = gr.Markdown( """<p style="text-align: center;"><b>Step 3.</b> Hit \"Done\" button to confirm.</p>""", visible=False, ) ref_manual_done = gr.Button(value="Done", interactive=True, visible=False) ref_manual_pose = gr.Image( type="numpy", label="Reference Pose", show_label=True, height=LENGTH, width=LENGTH, interactive=False, visible=False ) ref_use_manual = gr.Button(value="Click here to use manual, not automatic", interactive=True, visible=False) ref_manual_instruct = gr.Markdown( value="""<p style="text-align: left; font-weight: bold; ">OpenPose Keypoints Convention</p>""", visible=True ) ref_manual_openpose = gr.Image( value="openpose.png", type="numpy", show_label=False, height=LENGTH // 2, width=LENGTH // 2, interactive=False, visible=True ) gr.Markdown( """<p style="text-align: center;">③ Optionally flip the hand</p>""" ) ref_flip = gr.Checkbox( value=False, label="Flip Handedness (Reference)", interactive=False ) with gr.Column(): gr.Markdown( """<p style="text-align: center; font-size: 20px; font-weight: bold;">2. Upload a hand image for target hand pose 📥</p>""" ) gr.Markdown( """<p style="text-align: center;">① Optionally crop the image</p>""" ) target = gr.ImageEditor( type="numpy", label="Target", show_label=True, height=LENGTH, width=LENGTH, brush=False, layers=False, crop_size="1:1", ) gr.Examples(example_target_imgs, [target], examples_per_page=20) gr.Markdown( """<p style="text-align: center;">② Hit the "Finish Cropping" button to get hand pose</p>""" ) target_finish_crop = gr.Button( value="Finish Cropping", interactive=False ) target_pose = gr.Image( type="numpy", label="Target Pose", show_label=True, height=LENGTH, width=LENGTH, interactive=False, ) gr.Markdown( """<p style="text-align: center;">③ Optionally flip the hand</p>""" ) target_flip = gr.Checkbox( value=False, label="Flip Handedness (Target)", interactive=False ) with gr.Column(): gr.Markdown( """<p style="text-align: center; font-size: 20px; font-weight: bold;">3. Press "Run" to get the edited results 🎯</p>""" ) run = gr.Button(value="Run", interactive=False) gr.Markdown( """<p style="text-align: center;">⚠️ ~20s per generation with RTX3090. ~50s with A100. <br>(For example, if you set Number of generations as 2, it would take around 40s)</p>""" ) results = gr.Gallery( type="numpy", label="Results", show_label=True, height=LENGTH, min_width=LENGTH, columns=MAX_N, interactive=False, preview=True, ) results_pose = gr.Gallery( type="numpy", label="Results Pose", show_label=True, height=LENGTH, min_width=LENGTH, columns=MAX_N, interactive=False, preview=True, ) gr.Markdown( """<p style="text-align: center;">✨ Hit "Clear" to restart from the beginning</p>""" ) clear = gr.ClearButton() with gr.Tab("More options"): with gr.Row(): n_generation = gr.Slider( label="Number of generations", value=1, minimum=1, maximum=MAX_N, step=1, randomize=False, interactive=True, ) seed = gr.Slider( label="Seed", value=42, minimum=0, maximum=10000, step=1, randomize=False, interactive=True, ) cfg = gr.Slider( label="Classifier free guidance scale", value=2.5, minimum=0.0, maximum=10.0, step=0.1, randomize=False, interactive=True, ) ref.change(enable_component, [ref, ref], ref_finish_crop) ref_finish_crop.click(prepare_ref_anno, [ref], [ref_im_raw, ref_kp_raw]) ref_kp_raw.change(lambda x: x, ref_im_raw, ref_manual_kp_right) ref_kp_raw.change(lambda x: x, ref_im_raw, ref_manual_kp_left) ref_manual_checkbox.select( set_visible, [ref_manual_checkbox, ref_kp_got, ref_im_raw, ref_manual_kp_right, ref_manual_kp_left, ref_manual_done], [ ref_kp_got, ref_manual_kp_right, ref_manual_kp_left, ref_manual_kp_right, ref_manual_undo_right, ref_manual_reset_right, ref_manual_kp_left, ref_manual_undo_left, ref_manual_reset_left, ref_manual_kp_r_info, ref_manual_kp_l_info, ref_manual_done, ref_manual_done_info ] ) ref_manual_kp_right.select( get_kps, [ref_im_raw, ref_kp_got, gr.State("right")], [ref_manual_kp_right, ref_kp_got] ) ref_manual_undo_right.click( undo_kps, [ref_im_raw, ref_kp_got, gr.State("right")], [ref_manual_kp_right, ref_kp_got] ) ref_manual_reset_right.click( reset_kps, [ref_im_raw, ref_kp_got, gr.State("right")], [ref_manual_kp_right, ref_kp_got] ) ref_manual_kp_left.select( get_kps, [ref_im_raw, ref_kp_got, gr.State("left")], [ref_manual_kp_left, ref_kp_got] ) ref_manual_undo_left.click( undo_kps, [ref_im_raw, ref_kp_got, gr.State("left")], [ref_manual_kp_left, ref_kp_got] ) ref_manual_reset_left.click( reset_kps, [ref_im_raw, ref_kp_got, gr.State("left")], [ref_manual_kp_left, ref_kp_got] ) ref_manual_done.click(get_ref_anno, [ref_im_raw, ref_kp_got], [ref_img, ref_manual_pose, ref_manual_cond]) ref_manual_cond.change(lambda x: x, ref_manual_cond, ref_cond) ref_use_manual.click(lambda x: x, ref_manual_cond, ref_cond) # ref_use_manual.click(lambda x: gr.Info("Manual hand keypoints will be used for 'Reference'", duration=3)) ref_manual_done.click(visible_component, [ref_manual_pose, ref_manual_pose], ref_manual_pose) ref_manual_done.click(visible_component, [ref_use_manual, ref_use_manual], ref_use_manual) ref_manual_pose.change(enable_component, [ref_manual_pose, ref_manual_pose], ref_manual_done) ref_kp_raw.change(get_ref_anno, [ref_im_raw, ref_kp_raw], [ref_img, ref_pose, ref_auto_cond]) ref_auto_cond.change(lambda x: x, ref_auto_cond, ref_cond) ref_use_auto.click(lambda x: x, ref_auto_cond, ref_cond) # ref_use_auto.click(lambda x: gr.Info("Automatic hand keypoints will be used for 'Reference'", duration=3)) ref_pose.change(enable_component, [ref_kp_raw, ref_pose], ref_use_auto) ref_pose.change(enable_component, [ref_img, ref_pose], ref_flip) ref_manual_pose.change(enable_component, [ref_img, ref_manual_pose], ref_flip) ref_flip.select( flip_hand, [ref, ref_pose, ref_cond, gr.State(value=None), ref_manual_pose, ref_manual_kp_right, ref_manual_kp_left], [ref, ref_pose, ref_cond, dump, ref_manual_pose, ref_manual_kp_right, ref_manual_kp_left] ) target.change(enable_component, [target, target], target_finish_crop) target_finish_crop.click( get_target_anno, [target], [target_img, target_pose, target_cond, target_keypts], ) target_pose.change(enable_component, [target_img, target_pose], target_flip) target_flip.select( flip_hand, [target, target_pose, target_cond, target_keypts], [target, target_pose, target_cond, target_keypts], ) ref_pose.change(enable_component, [ref_pose, target_pose], run) ref_manual_pose.change(enable_component, [ref_manual_pose, target_pose], run) target_pose.change(enable_component, [ref_pose, target_pose], run) run.click( sample_diff, [ref_cond, target_cond, target_keypts, n_generation, seed, cfg], [results, results_pose], ) clear.click( clear_all, [], [ ref, ref_manual_kp_right, ref_manual_kp_left, ref_pose, ref_manual_pose, ref_flip, target, target_pose, target_flip, results, results_pose, ref_img, ref_cond, target_img, target_cond, target_keypts, n_generation, seed, cfg, ref_kp_raw, ref_manual_checkbox ], ) clear.click( set_unvisible, [], [ ref_manual_kp_r_info, ref_manual_kp_l_info, ref_manual_undo_left, ref_manual_undo_right, ref_manual_reset_left, ref_manual_reset_right, ref_manual_done, ref_manual_done_info, ref_manual_pose, ref_use_manual, ref_manual_kp_right, ref_manual_kp_left ] ) with gr.Tab("Fix Hands"): fix_inpaint_mask = gr.State(value=None) fix_original = gr.State(value=None) fix_img = gr.State(value=None) fix_kpts = gr.State(value=None) fix_kpts_np = gr.State(value=None) fix_ref_cond = gr.State(value=None) fix_target_cond = gr.State(value=None) fix_latent = gr.State(value=None) fix_inpaint_latent = gr.State(value=None) with gr.Row(): with gr.Column(): gr.Markdown( """<p style="text-align: center; font-size: 20px; font-weight: bold;">1. Upload a malformed hand image to fix 📥</p>""" ) gr.Markdown( """<p style="text-align: center;">① Optionally crop the image around the hand</p>""" ) fix_crop = gr.ImageEditor( type="numpy", sources=["upload", "webcam", "clipboard"], label="Image crop", show_label=True, height=LENGTH, width=LENGTH, layers=False, crop_size="1:1", brush=False, image_mode="RGBA", container=False, ) fix_example = gr.Examples( fix_example_imgs, inputs=[fix_crop], examples_per_page=20, ) gr.Markdown( """<p style="text-align: center;">② Brush area (e.g., wrong finger) that needs to be fixed. This will serve as an inpaint mask</p>""" ) fix_ref = gr.ImageEditor( type="numpy", label="Image brush", sources=(), show_label=True, height=LENGTH, width=LENGTH, layers=False, transforms=("brush"), brush=gr.Brush( colors=["rgb(255, 255, 255)"], default_size=20 ), # 204, 50, 50 image_mode="RGBA", container=False, interactive=False, ) fix_finish_crop = gr.Button( value="Finish Croping & Brushing", interactive=False ) with gr.Column(): gr.Markdown( """<p style="text-align: center; font-size: 20px; font-weight: bold;">2. Click on hand to get target hand pose</p>""" ) gr.Markdown( """<p style="text-align: center;">① Tell us if this is right, left, or both hands</p>""" ) fix_checkbox = gr.CheckboxGroup( ["Right hand", "Left hand"], show_label=False, interactive=False, ) gr.Markdown( """<p style="text-align: center;">② On the image, click 21 hand keypoints. This will serve as target hand poses. See the \"OpenPose keypoints convention\" for guidance.</p>""" ) fix_kp_r_info = gr.Markdown( """<p style="text-align: center; font-size: 20px; font-weight: bold; ">Select right only</p>""", visible=False, ) fix_kp_right = gr.Image( type="numpy", label="Keypoint Selection (right hand)", show_label=True, height=LENGTH, width=LENGTH, interactive=False, visible=False, sources=[], ) with gr.Row(): fix_undo_right = gr.Button( value="Undo", interactive=False, visible=False ) fix_reset_right = gr.Button( value="Reset", interactive=False, visible=False ) fix_kp_l_info = gr.Markdown( """<p style="text-align: center; font-size: 20px; font-weight: bold; ">Select left only</p>""", visible=False ) fix_kp_left = gr.Image( type="numpy", label="Keypoint Selection (left hand)", show_label=True, height=LENGTH, width=LENGTH, interactive=False, visible=False, sources=[], ) with gr.Row(): fix_undo_left = gr.Button( value="Undo", interactive=False, visible=False ) fix_reset_left = gr.Button( value="Reset", interactive=False, visible=False ) gr.Markdown( """<p style="text-align: left; font-weight: bold; ">OpenPose keypoints convention</p>""" ) fix_openpose = gr.Image( value="openpose.png", type="numpy", show_label=False, height=LENGTH // 2, width=LENGTH // 2, interactive=False, ) with gr.Column(): gr.Markdown( """<p style="text-align: center; font-size: 20px; font-weight: bold;">3. Press "Ready" to start pre-processing</p>""" ) fix_ready = gr.Button(value="Ready", interactive=False) gr.Markdown( """<p style="text-align: center; font-weight: bold; ">Visualized (256, 256) Inpaint Mask</p>""" ) fix_vis_mask32 = gr.Image( type="numpy", label=f"Visualized {opts.latent_size} Inpaint Mask", show_label=True, height=opts.latent_size, width=opts.latent_size, interactive=False, visible=False, ) fix_vis_mask256 = gr.Image( type="numpy", visible=True, show_label=False, height=opts.image_size, width=opts.image_size, interactive=False, ) gr.Markdown( """<p style="text-align: center;">[NOTE] Above should be inpaint mask that you brushed, NOT the segmentation mask of the entire hand. </p>""" ) with gr.Column(): gr.Markdown( """<p style="text-align: center; font-size: 20px; font-weight: bold;">4. Press "Run" to get the fixed hand image 🎯</p>""" ) fix_run = gr.Button(value="Run", interactive=False) gr.Markdown( """<p style="text-align: center;">⚠️ >3min and ~24GB per generation</p>""" ) fix_result = gr.Gallery( type="numpy", label="Results", show_label=True, height=LENGTH, min_width=LENGTH, columns=FIX_MAX_N, interactive=False, preview=True, ) fix_result_pose = gr.Gallery( type="numpy", label="Results Pose", show_label=True, height=LENGTH, min_width=LENGTH, columns=FIX_MAX_N, interactive=False, preview=True, ) gr.Markdown( """<p style="text-align: center;">✨ Hit "Clear" to restart from the beginning</p>""" ) fix_clear = gr.ClearButton() gr.Markdown( """<p style="text-align: left; font-size: 25px;"><b>More options</b></p>""" ) gr.Markdown( "⚠️ Currently, Number of generation > 1 could lead to out-of-memory" ) with gr.Row(): fix_n_generation = gr.Slider( label="Number of generations", value=1, minimum=1, maximum=FIX_MAX_N, step=1, randomize=False, interactive=True, ) fix_seed = gr.Slider( label="Seed", value=42, minimum=0, maximum=10000, step=1, randomize=False, interactive=True, ) fix_cfg = gr.Slider( label="Classifier free guidance scale", value=3.0, minimum=0.0, maximum=10.0, step=0.1, randomize=False, interactive=True, ) fix_quality = gr.Slider( label="Quality", value=10, minimum=1, maximum=10, step=1, randomize=False, interactive=True, ) fix_crop.change(enable_component, [fix_crop, fix_crop], fix_ref) fix_crop.change(resize_to_full, fix_crop, fix_ref) fix_ref.change(enable_component, [fix_ref, fix_ref], fix_finish_crop) fix_finish_crop.click(get_mask_inpaint, [fix_ref], [fix_inpaint_mask]) fix_finish_crop.click(lambda x: x["background"], [fix_crop], [fix_original]) fix_finish_crop.click(visualize_ref, [fix_crop, fix_ref], [fix_img]) fix_img.change(lambda x: x, [fix_img], [fix_kp_right]) fix_img.change(lambda x: x, [fix_img], [fix_kp_left]) fix_inpaint_mask.change( enable_component, [fix_inpaint_mask, fix_inpaint_mask], fix_checkbox ) fix_inpaint_mask.change( enable_component, [fix_inpaint_mask, fix_inpaint_mask], fix_kp_right ) fix_inpaint_mask.change( enable_component, [fix_inpaint_mask, fix_inpaint_mask], fix_undo_right ) fix_inpaint_mask.change( enable_component, [fix_inpaint_mask, fix_inpaint_mask], fix_reset_right ) fix_inpaint_mask.change( enable_component, [fix_inpaint_mask, fix_inpaint_mask], fix_kp_left ) fix_inpaint_mask.change( enable_component, [fix_inpaint_mask, fix_inpaint_mask], fix_undo_left ) fix_inpaint_mask.change( enable_component, [fix_inpaint_mask, fix_inpaint_mask], fix_reset_left ) fix_inpaint_mask.change( enable_component, [fix_inpaint_mask, fix_inpaint_mask], fix_ready ) fix_checkbox.select( set_visible, [fix_checkbox, fix_kpts, fix_img, fix_kp_right, fix_kp_left], [ fix_kpts, fix_kp_right, fix_kp_left, fix_kp_right, fix_undo_right, fix_reset_right, fix_kp_left, fix_undo_left, fix_reset_left, fix_kp_r_info, fix_kp_l_info, ], ) fix_kp_right.select( get_kps, [fix_img, fix_kpts, gr.State("right")], [fix_kp_right, fix_kpts] ) fix_undo_right.click( undo_kps, [fix_img, fix_kpts, gr.State("right")], [fix_kp_right, fix_kpts] ) fix_reset_right.click( reset_kps, [fix_img, fix_kpts, gr.State("right")], [fix_kp_right, fix_kpts] ) fix_kp_left.select( get_kps, [fix_img, fix_kpts, gr.State("left")], [fix_kp_left, fix_kpts] ) fix_undo_left.click( undo_kps, [fix_img, fix_kpts, gr.State("left")], [fix_kp_left, fix_kpts] ) fix_reset_left.click( reset_kps, [fix_img, fix_kpts, gr.State("left")], [fix_kp_left, fix_kpts] ) fix_vis_mask32.change( enable_component, [fix_vis_mask32, fix_vis_mask256], fix_run ) fix_ready.click( ready_sample, [fix_original, fix_inpaint_mask, fix_kpts], [ fix_ref_cond, fix_target_cond, fix_latent, fix_inpaint_latent, fix_kpts_np, fix_vis_mask32, fix_vis_mask256, ], ) fix_run.click( sample_inpaint, [ fix_ref_cond, fix_target_cond, fix_latent, fix_inpaint_latent, fix_kpts_np, fix_n_generation, fix_seed, fix_cfg, fix_quality, ], [fix_result, fix_result_pose], ) fix_clear.click( fix_clear_all, [], [ fix_crop, fix_ref, fix_kp_right, fix_kp_left, fix_result, fix_result_pose, fix_inpaint_mask, fix_original, fix_img, fix_vis_mask32, fix_vis_mask256, fix_kpts, fix_kpts_np, fix_ref_cond, fix_target_cond, fix_latent, fix_inpaint_latent, fix_n_generation, fix_seed, fix_cfg, fix_quality, ], ) gr.Markdown("<h1>Citation</h1>") gr.Markdown( """<p style="text-align: left;">If this was useful, please cite us! ❤️</p>""" ) gr.Markdown(_CITE_) # print("Ready to launch..") # _, _, shared_url = demo.queue().launch( # share=True, server_name="0.0.0.0", server_port=7739 # ) demo.launch(share=True)