Spaces:
Runtime error
Runtime error
File size: 6,560 Bytes
060c9d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
# import streamlit as st
# from dotenv import load_dotenv
# from PyPDF2 import PdfReader
# from langchain.text_splitter import RecursiveCharacterTextSplitter
# from langchain.embeddings import HuggingFaceInstructEmbeddings
# from langchain.vectorstores import FAISS
# from langchain.memory import ConversationBufferMemory
# from langchain.chains import ConversationalRetrievalChain
# from htmlTemplates import css, bot_template, user_template
# from langchain.llms import HuggingFaceHub
# import psycopg2
# from pgvector import PGVector
# # Database connection parameters
# DB_HOST = "localhost"
# DB_PORT = "5432"
# DB_NAME = "chatbot"
# DB_USER = "admin"
# DB_PASSWORD = "admin"
# #Function to establish a database connection
# def connect_to_postgresql():
# return psycopg2.connect(
# host=DB_HOST,
# port=DB_PORT,
# database=DB_NAME,
# user=DB_USER,
# password=DB_PASSWORD
# )
# def store_embeddings_in_postgresql(text_chunks, conn):
# """Function to store embeddings in PostgreSQL using pgvector"""
# # Create a cursor
# cursor = conn.cursor()
# try:
# # Create a table if not exists
# cursor.execute("""
# CREATE TABLE IF NOT EXISTS embeddings (
# id SERIAL PRIMARY KEY,
# vector PG_VECTOR
# )
# """)
# # Insert embeddings into the table
# for text_chunk in text_chunks:
# # To store embeddings in a 'vector' column in 'embeddings' table
# cursor.execute("INSERT INTO embeddings (vector) VALUES (PG_VECTOR(%s))", (text_chunk,))
# # Commit the transaction
# conn.commit()
# st.success("Embeddings stored successfully in PostgreSQL.")
# except Exception as e:
# # Rollback in case of an error
# conn.rollback()
# st.error(f"Error storing embeddings in PostgreSQL: {str(e)}")
# finally:
# # Close the cursor
# cursor.close()
# def create_index_in_postgresql(conn):
# """Function to create an index on the stored vectors using HNSW or IVFFIT"""
# # Create a cursor
# cursor = conn.cursor()
# try:
# # Create an index if not exists
# cursor.execute("""
# CREATE INDEX IF NOT EXISTS embeddings_index
# ON embeddings
# USING ivfflat (vector)
# """)
# # Commit the transaction
# conn.commit()
# st.success("Index created successfully in PostgreSQL.")
# except Exception as e:
# # Rollback in case of an error
# conn.rollback()
# st.error(f"Error creating index in PostgreSQL: {str(e)}")
# finally:
# # Close the cursor
# cursor.close()
# def get_pdf_text(pdf):
# """Upload pdf files and extract text"""
# text = ""
# pdf_reader = PdfReader(pdf)
# for page in pdf_reader.pages:
# text += page.extract_text()
# return text
# def get_files(text_doc):
# """Upload text files and extraxt text"""
# text =""
# for file in text_doc:
# print(text)
# if file.type == "text/plain":
# # Read the text directly from the file
# text += file.getvalue().decode("utf-8")
# elif file.type == "application/pdf":
# text += get_pdf_text(file)
# return text
# def get_text_chunks(text):
# """Create chunks of the extracted text"""
# text_splitter = RecursiveCharacterTextSplitter(
# chunk_size=900,
# chunk_overlap=0,
# separators="\n",
# add_start_index = True,
# length_function= len
# )
# chunks = text_splitter.split_text(text)
# return chunks
# def get_vectorstore(text_chunks, conn):
# """Create embeddings for the chunks and store them in a vectorstore"""
# embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
# vectorstore = PGVector.from_texts(texts=text_chunks, embedding=embeddings, connection=conn)
# return vectorstore
# def get_conversation_chain(vectorstore):
# llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature":0.2, "max_length":1024})
# memory = ConversationBufferMemory(
# memory_key='chat_history', return_messages=True)
# conversation_chain = ConversationalRetrievalChain.from_llm(
# llm=llm,
# retriever=vectorstore.as_retriever(),
# memory=memory
# )
# return conversation_chain
# def handle_userinput(user_question):
# response = st.session_state.conversation({'question': user_question})
# st.session_state.chat_history = response['chat_history']
# for i, message in enumerate(st.session_state.chat_history):
# if i % 2 == 0:
# st.write(user_template.replace(
# "{{MSG}}", message.content), unsafe_allow_html=True)
# else:
# st.write(bot_template.replace(
# "{{MSG}}", message.content), unsafe_allow_html=True)
# def main():
# load_dotenv()
# st.set_page_config(page_title="ChatBot")
# st.write(css, unsafe_allow_html=True)
# if "conversation" not in st.session_state:
# st.session_state.conversation = None
# if "chat_history" not in st.session_state:
# st.session_state.chat_history = None
# # Connect to PostgreSQL
# conn = connect_to_postgresql()
# st.header("Chat Bot")
# user_question = st.text_input("Ask a question:")
# if user_question:
# handle_userinput(user_question, conn)
# with st.sidebar:
# st.subheader("Your documents")
# pdf_docs = st.file_uploader(
# "Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
# if st.button("Process"):
# with st.spinner("Processing"):
# # get text
# raw_text = get_files(pdf_docs)
# # get the text chunks
# text_chunks = get_text_chunks(raw_text)
# # store embeddings in PostgreSQL
# store_embeddings_in_postgresql(text_chunks, conn)
# # create vector store
# vectorstore = get_vectorstore(text_chunks, conn)
# # create index in PostgreSQL
# create_index_in_postgresql(conn)
# # create conversation chain
# st.session_state.conversation = get_conversation_chain(
# vectorstore)
# if __name__ == '__main__':
# main() |