chatbot / app.py
ChaitanyaFM's picture
Changed the text generation model
c729c7f
import streamlit as st
from dotenv import load_dotenv
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.vectorstores import FAISS
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
from langchain.llms import HuggingFaceHub
import os
import numpy as np
#EMBEDDINGS_FILE = "embeddings.npy"
INDEX_FILE = "index.faiss"
def save_embeddings_and_index(index):
#np.save(EMBEDDINGS_FILE, embeddings)
index.save_local(INDEX_FILE)
def load_embeddings_and_index():
if os.path.exists(INDEX_FILE):
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
index = FAISS.load_local(INDEX_FILE, embeddings)
return index
return None
def get_pdf_text(pdf):
text = ""
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_files(text_doc):
text = ""
for file in text_doc:
if file.type == "text/plain":
# Read the text directly from the file
text += file.getvalue().decode("utf-8")
elif file.type == "application/pdf":
text += get_pdf_text(file)
return text
def get_text_chunks(text):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=900,
chunk_overlap=0,
separators="\n",
add_start_index = True,
length_function= len
)
chunks = text_splitter.split_text(text)
return chunks
def get_vectorstore(text_chunks, index):
if index is None:
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl")
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
return vectorstore
else:
index.add_texts(texts=text_chunks)
return index
def get_conversation_chain(vectorstore):
llm = HuggingFaceHub(repo_id="mistralai/Mistral-7B-v0.1", model_kwargs={"temperature":0.2, "max_length":1024})
memory = ConversationBufferMemory(
memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vectorstore.as_retriever(),
memory=memory
)
return conversation_chain
def handle_userinput(user_question):
response = st.session_state.conversation({'question': user_question})
st.session_state.chat_history = response['chat_history']
for i, message in enumerate(st.session_state.chat_history):
if i % 2 == 0:
st.write(user_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
else:
st.write(bot_template.replace(
"{{MSG}}", message.content), unsafe_allow_html=True)
def main():
load_dotenv()
st.set_page_config(page_title="ChatBot")
st.write(css, unsafe_allow_html=True)
if "conversation" not in st.session_state:
index = load_embeddings_and_index()
if index==None:
st.session_state.conversation = None
else:
st.session_state.conversation = get_conversation_chain(index)
if "chat_history" not in st.session_state:
st.session_state.chat_history = None
st.header("Chat Bot")
user_question = st.text_input("Ask a question:")
if user_question:
handle_userinput(user_question)
with st.sidebar:
st.subheader("Your documents")
pdf_docs = st.file_uploader(
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
if st.button("Process"):
with st.spinner("Processing"):
index = load_embeddings_and_index()
raw_text = get_files(pdf_docs)
text_chunks = get_text_chunks(raw_text)
# Load a new faiss index or append to existing (if it exists)
index = get_vectorstore(text_chunks, index)
# save updated faiss index
save_embeddings_and_index(index)
# create conversation chain
st.session_state.conversation = get_conversation_chain(index)
if __name__ == '__main__':
main()