Spaces:
Runtime error
Runtime error
import streamlit as st | |
from dotenv import load_dotenv | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings import HuggingFaceInstructEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
from htmlTemplates import css, bot_template, user_template | |
from langchain.llms import HuggingFaceHub | |
import os | |
import numpy as np | |
#EMBEDDINGS_FILE = "embeddings.npy" | |
INDEX_FILE = "index.faiss" | |
def save_embeddings_and_index(index): | |
#np.save(EMBEDDINGS_FILE, embeddings) | |
index.save_local(INDEX_FILE) | |
def load_embeddings_and_index(): | |
if os.path.exists(INDEX_FILE): | |
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") | |
index = FAISS.load_local(INDEX_FILE, embeddings) | |
return index | |
return None | |
def get_pdf_text(pdf): | |
text = "" | |
pdf_reader = PdfReader(pdf) | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
return text | |
def get_files(text_doc): | |
text = "" | |
for file in text_doc: | |
if file.type == "text/plain": | |
# Read the text directly from the file | |
text += file.getvalue().decode("utf-8") | |
elif file.type == "application/pdf": | |
text += get_pdf_text(file) | |
return text | |
def get_text_chunks(text): | |
text_splitter = RecursiveCharacterTextSplitter( | |
chunk_size=900, | |
chunk_overlap=0, | |
separators="\n", | |
add_start_index = True, | |
length_function= len | |
) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
def get_vectorstore(text_chunks, index): | |
if index is None: | |
embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") | |
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
return vectorstore | |
else: | |
index.add_texts(texts=text_chunks) | |
return index | |
def get_conversation_chain(vectorstore): | |
llm = HuggingFaceHub(repo_id="mistralai/Mistral-7B-v0.1", model_kwargs={"temperature":0.2, "max_length":1024}) | |
memory = ConversationBufferMemory( | |
memory_key='chat_history', return_messages=True) | |
conversation_chain = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
retriever=vectorstore.as_retriever(), | |
memory=memory | |
) | |
return conversation_chain | |
def handle_userinput(user_question): | |
response = st.session_state.conversation({'question': user_question}) | |
st.session_state.chat_history = response['chat_history'] | |
for i, message in enumerate(st.session_state.chat_history): | |
if i % 2 == 0: | |
st.write(user_template.replace( | |
"{{MSG}}", message.content), unsafe_allow_html=True) | |
else: | |
st.write(bot_template.replace( | |
"{{MSG}}", message.content), unsafe_allow_html=True) | |
def main(): | |
load_dotenv() | |
st.set_page_config(page_title="ChatBot") | |
st.write(css, unsafe_allow_html=True) | |
if "conversation" not in st.session_state: | |
index = load_embeddings_and_index() | |
if index==None: | |
st.session_state.conversation = None | |
else: | |
st.session_state.conversation = get_conversation_chain(index) | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = None | |
st.header("Chat Bot") | |
user_question = st.text_input("Ask a question:") | |
if user_question: | |
handle_userinput(user_question) | |
with st.sidebar: | |
st.subheader("Your documents") | |
pdf_docs = st.file_uploader( | |
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True) | |
if st.button("Process"): | |
with st.spinner("Processing"): | |
index = load_embeddings_and_index() | |
raw_text = get_files(pdf_docs) | |
text_chunks = get_text_chunks(raw_text) | |
# Load a new faiss index or append to existing (if it exists) | |
index = get_vectorstore(text_chunks, index) | |
# save updated faiss index | |
save_embeddings_and_index(index) | |
# create conversation chain | |
st.session_state.conversation = get_conversation_chain(index) | |
if __name__ == '__main__': | |
main() | |