import streamlit as st from dotenv import load_dotenv from PyPDF2 import PdfReader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.embeddings import HuggingFaceInstructEmbeddings from langchain.vectorstores import FAISS from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from htmlTemplates import css, bot_template, user_template from langchain.llms import HuggingFaceHub import os import numpy as np #EMBEDDINGS_FILE = "embeddings.npy" INDEX_FILE = "index.faiss" def save_embeddings_and_index(index): #np.save(EMBEDDINGS_FILE, embeddings) index.save_local(INDEX_FILE) def load_embeddings_and_index(): if os.path.exists(INDEX_FILE): embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") index = FAISS.load_local(INDEX_FILE, embeddings) return index return None def get_pdf_text(pdf): text = "" pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text += page.extract_text() return text def get_files(text_doc): text = "" for file in text_doc: if file.type == "text/plain": # Read the text directly from the file text += file.getvalue().decode("utf-8") elif file.type == "application/pdf": text += get_pdf_text(file) return text def get_text_chunks(text): text_splitter = RecursiveCharacterTextSplitter( chunk_size=900, chunk_overlap=0, separators="\n", add_start_index = True, length_function= len ) chunks = text_splitter.split_text(text) return chunks def get_vectorstore(text_chunks, index): if index is None: embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) return vectorstore else: index.add_texts(texts=text_chunks) return index def get_conversation_chain(vectorstore): llm = HuggingFaceHub(repo_id="mistralai/Mistral-7B-v0.1", model_kwargs={"temperature":0.2, "max_length":1024}) memory = ConversationBufferMemory( memory_key='chat_history', return_messages=True) conversation_chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=vectorstore.as_retriever(), memory=memory ) return conversation_chain def handle_userinput(user_question): response = st.session_state.conversation({'question': user_question}) st.session_state.chat_history = response['chat_history'] for i, message in enumerate(st.session_state.chat_history): if i % 2 == 0: st.write(user_template.replace( "{{MSG}}", message.content), unsafe_allow_html=True) else: st.write(bot_template.replace( "{{MSG}}", message.content), unsafe_allow_html=True) def main(): load_dotenv() st.set_page_config(page_title="ChatBot") st.write(css, unsafe_allow_html=True) if "conversation" not in st.session_state: index = load_embeddings_and_index() if index==None: st.session_state.conversation = None else: st.session_state.conversation = get_conversation_chain(index) if "chat_history" not in st.session_state: st.session_state.chat_history = None st.header("Chat Bot") user_question = st.text_input("Ask a question:") if user_question: handle_userinput(user_question) with st.sidebar: st.subheader("Your documents") pdf_docs = st.file_uploader( "Upload your PDFs here and click on 'Process'", accept_multiple_files=True) if st.button("Process"): with st.spinner("Processing"): index = load_embeddings_and_index() raw_text = get_files(pdf_docs) text_chunks = get_text_chunks(raw_text) # Load a new faiss index or append to existing (if it exists) index = get_vectorstore(text_chunks, index) # save updated faiss index save_embeddings_and_index(index) # create conversation chain st.session_state.conversation = get_conversation_chain(index) if __name__ == '__main__': main()