Last commit not found
import sys | |
from typing import Dict | |
sys.path.insert(0, 'gradio-modified') | |
import gradio as gr | |
import numpy as np | |
import torch.nn as nn | |
from PIL import Image | |
import torch | |
if torch.cuda.is_available(): | |
t = torch.cuda.get_device_properties(0).total_memory | |
r = torch.cuda.memory_reserved(0) | |
a = torch.cuda.memory_allocated(0) | |
f = t-a # free inside reserved | |
if f < 2**32: | |
device = 'cpu' | |
else: | |
device = 'cuda' | |
else: | |
device = 'cpu' | |
torch._C._jit_set_bailout_depth(0) | |
print('Use device:', device) | |
net = torch.jit.load(f'weights/pkp-v1.{device}.jit.pt') | |
class BaseColor(nn.Module): | |
def __init__(self): | |
super(BaseColor, self).__init__() | |
self.l_cent = 50. | |
self.l_norm = 100. | |
self.ab_norm = 110. | |
def normalize_l(self, in_l): | |
return (in_l-self.l_cent)/self.l_norm | |
def unnormalize_l(self, in_l): | |
return in_l*self.l_norm + self.l_cent | |
def normalize_ab(self, in_ab): | |
return in_ab/self.ab_norm | |
def unnormalize_ab(self, in_ab): | |
return in_ab*self.ab_norm | |
class ECCVGenerator(BaseColor): | |
def __init__(self, norm_layer=nn.BatchNorm2d): | |
super(ECCVGenerator, self).__init__() | |
model1=[nn.Conv2d(1, 64, kernel_size=3, stride=1, padding=1, bias=True),] | |
model1+=[nn.ReLU(True),] | |
model1+=[nn.Conv2d(64, 64, kernel_size=3, stride=2, padding=1, bias=True),] | |
model1+=[nn.ReLU(True),] | |
model1+=[norm_layer(64),] | |
model2=[nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1, bias=True),] | |
model2+=[nn.ReLU(True),] | |
model2+=[nn.Conv2d(128, 128, kernel_size=3, stride=2, padding=1, bias=True),] | |
model2+=[nn.ReLU(True),] | |
model2+=[norm_layer(128),] | |
model3=[nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1, bias=True),] | |
model3+=[nn.ReLU(True),] | |
model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),] | |
model3+=[nn.ReLU(True),] | |
model3+=[nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1, bias=True),] | |
model3+=[nn.ReLU(True),] | |
model3+=[norm_layer(256),] | |
model4=[nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1, bias=True),] | |
model4+=[nn.ReLU(True),] | |
model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),] | |
model4+=[nn.ReLU(True),] | |
model4+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),] | |
model4+=[nn.ReLU(True),] | |
model4+=[norm_layer(512),] | |
model5=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] | |
model5+=[nn.ReLU(True),] | |
model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] | |
model5+=[nn.ReLU(True),] | |
model5+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] | |
model5+=[nn.ReLU(True),] | |
model5+=[norm_layer(512),] | |
model6=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] | |
model6+=[nn.ReLU(True),] | |
model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] | |
model6+=[nn.ReLU(True),] | |
model6+=[nn.Conv2d(512, 512, kernel_size=3, dilation=2, stride=1, padding=2, bias=True),] | |
model6+=[nn.ReLU(True),] | |
model6+=[norm_layer(512),] | |
model7=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),] | |
model7+=[nn.ReLU(True),] | |
model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),] | |
model7+=[nn.ReLU(True),] | |
model7+=[nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1, bias=True),] | |
model7+=[nn.ReLU(True),] | |
model7+=[norm_layer(512),] | |
model8=[nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=True),] | |
model8+=[nn.ReLU(True),] | |
model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),] | |
model8+=[nn.ReLU(True),] | |
model8+=[nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1, bias=True),] | |
model8+=[nn.ReLU(True),] | |
model8+=[nn.Conv2d(256, 313, kernel_size=1, stride=1, padding=0, bias=True),] | |
self.model1 = nn.Sequential(*model1) | |
self.model2 = nn.Sequential(*model2) | |
self.model3 = nn.Sequential(*model3) | |
self.model4 = nn.Sequential(*model4) | |
self.model5 = nn.Sequential(*model5) | |
self.model6 = nn.Sequential(*model6) | |
self.model7 = nn.Sequential(*model7) | |
self.model8 = nn.Sequential(*model8) | |
self.softmax = nn.Softmax(dim=1) | |
self.model_out = nn.Conv2d(313, 2, kernel_size=1, padding=0, dilation=1, stride=1, bias=False) | |
self.upsample4 = nn.Upsample(scale_factor=4, mode='bilinear') | |
def forward(self, input_l): | |
conv1_2 = self.model1(self.normalize_l(input_l)) | |
conv2_2 = self.model2(conv1_2) | |
conv3_3 = self.model3(conv2_2) | |
conv4_3 = self.model4(conv3_3) | |
conv5_3 = self.model5(conv4_3) | |
conv6_3 = self.model6(conv5_3) | |
conv7_3 = self.model7(conv6_3) | |
conv8_3 = self.model8(conv7_3) | |
out_reg = self.model_out(self.softmax(conv8_3)) | |
return self.unnormalize_ab(self.upsample4(out_reg)) | |
# model_net = torch.load(f'weights/colorizer.pt') | |
model = ECCVGenerator() | |
model_net.load_state_dict(torch.load(f'weights/colorizer.pt')) | |
def resize_original(img: Image.Image): | |
if img is None: | |
return img | |
if isinstance(img, dict): | |
img = img["image"] | |
guide_img = img.convert('L') | |
w, h = guide_img.size | |
scale = 256 / min(guide_img.size) | |
guide_img = guide_img.resize([int(round(s*scale)) for s in guide_img.size], Image.Resampling.LANCZOS) | |
guide = np.asarray(guide_img) | |
h, w = guide.shape[-2:] | |
rows = int(np.ceil(h/64))*64 | |
cols = int(np.ceil(w/64))*64 | |
ph_1 = (rows-h) // 2 | |
ph_2 = rows-h - (rows-h) // 2 | |
pw_1 = (cols-w) // 2 | |
pw_2 = cols-w - (cols-w) // 2 | |
guide = np.pad(guide, ((ph_1, ph_2), (pw_1, pw_2)), mode='constant', constant_values=255) | |
guide_img = Image.fromarray(guide) | |
return gr.Image.update(value=guide_img.convert('RGBA')), guide_img.convert('RGBA') | |
def colorize(img: Dict[str, Image.Image], guide_img: Image.Image, seed: int, hint_mode: str): | |
if not isinstance(img, dict): | |
return gr.update(visible=True) | |
if hint_mode == "Roughly Hint": | |
hint_mode_int = 0 | |
elif hint_mode == "Precisely Hint": | |
hint_mode_int = 0 | |
guide_img = guide_img.convert('L') | |
hint_img = img["mask"].convert('RGBA') # I modified gradio to enable it upload colorful mask | |
guide = torch.from_numpy(np.asarray(guide_img))[None,None].float().to(device) / 255.0 * 2 - 1 | |
hint = torch.from_numpy(np.asarray(hint_img)).permute(2,0,1)[None].float().to(device) / 255.0 * 2 - 1 | |
hint_alpha = (hint[:,-1:] > 0.99).float() | |
hint = hint[:,:3] * hint_alpha - 2 * (1 - hint_alpha) | |
np.random.seed(int(seed)) | |
b, c, h, w = hint.shape | |
h //= 8 | |
w //= 8 | |
noises = [torch.from_numpy(np.random.randn(b, c, h, w)).float().to(device) for _ in range(16+1)] | |
with torch.inference_mode(): | |
sample = net(noises, guide, hint, hint_mode_int) | |
out = sample[0].cpu().numpy().transpose([1,2,0]) | |
out = np.uint8(((out + 1) / 2 * 255).clip(0,255)) | |
return Image.fromarray(out).convert('RGB') | |
def colorize2(img: Image.Image, model_option: str): | |
if not isinstance(img, dict): | |
return gr.update(visible=True) | |
if hint_mode == "Model 1": | |
model_int = 0 | |
elif hint_mode == "Model 2": | |
model_int = 0 | |
with torch.inference_mode(): | |
out2 = model(input) | |
out = sample[0].cpu().numpy().transpose([1,2,0]) | |
out = np.uint8(((out + 1) / 2 * 255).clip(0,255)) | |
return Image.fromarray(out).convert('RGB') | |
with gr.Blocks() as demo: | |
gr.Markdown('''<center><h1>Image Colorization With Hint</h1></center> | |
<h2>Colorize your images/sketches with hint points.</h2> | |
<br /> | |
''') | |
with gr.Row(): | |
with gr.Column(): | |
inp = gr.Image( | |
source="upload", | |
tool="sketch", # tool="color-sketch", # color-sketch upload image mixed with the original | |
type="pil", | |
label="Sketch", | |
interactive=True, | |
elem_id="sketch-canvas" | |
) | |
inp_store = gr.Image( | |
type="pil", | |
interactive=False | |
) | |
inp_store.visible = False | |
with gr.Column(): | |
seed = gr.Slider(1, 2**32, step=1, label="Seed", interactive=True, randomize=True) | |
hint_mode = gr.Radio(["Roughly Hint", "Precisely Hint"], value="Roughly Hint", label="Hint Mode") | |
btn = gr.Button("Run") | |
with gr.Column(): | |
output = gr.Image(type="pil", label="Output", interactive=False) | |
with gr.Row(): | |
with gr.Column(): | |
inp2 = gr.Image( | |
source="upload", | |
type="pil", | |
label="Sketch", | |
interactive=True | |
) | |
inp_store2 = gr.Image( | |
type="pil", | |
interactive=False | |
) | |
inp_store2.visible = False | |
with gr.Column(): | |
# seed = gr.Slider(1, 2**32, step=1, label="Seed", interactive=True, randomize=True) | |
model_option = gr.Radio(["Model 1", "Model 2"], value="Model 1", label="Model 2") | |
btn2 = gr.Button("Run Colorization") | |
with gr.Column(): | |
output2 = gr.Image(type="pil", label="Output2", interactive=False) | |
gr.Markdown(''' | |
Upon uploading an image, kindly give color hints at specific points, and then run the model. Average inference time is about 52 seconds.<br /> | |
''') | |
gr.Markdown('''Authors: <a href=\"https://www.linkedin.com/in/chakshu-dhannawat/">Chakshu Dhannawat</a>, <a href=\"https://www.linkedin.com/in/navlika-singh-963120204/">Navlika Singh</a>,<a href=\"https://www.linkedin.com/in/akshat-jain-103550201/"> Akshat Jain</a>''') | |
inp.upload( | |
resize_original, | |
inp, | |
[inp, inp_store], | |
) | |
btn.click( | |
colorize, | |
[inp, inp_store, seed, hint_mode], | |
output | |
) | |
btn2.click( | |
colorize2, | |
[inp, model_option], | |
output2 | |
) | |
if __name__ == "__main__": | |
demo.launch() | |