Spaces:
Runtime error
Runtime error
File size: 4,974 Bytes
96cd96f c47c3ea 96a6f43 96cd96f bd111f7 96cd96f 96a6f43 96cd96f 96a6f43 96cd96f 6af4300 96a6f43 6af4300 96cd96f 96a6f43 96cd96f bd111f7 96cd96f bd111f7 96cd96f 6af4300 96a6f43 a363e08 bd111f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
import os
import shutil
import gradio as gr
from clc.langchain_application import LangChainApplication
os.environ["CUDA_VISIBLE_DEVICES"] = '1'
# 修改成自己的配置!!!
class LangChainCFG:
llm_model_name = '../../pretrained_models/chatglm-6b-int4-qe' # 本地模型文件 or huggingface远程仓库
embedding_model_name = '../../pretrained_models/text2vec-large-chinese' # 检索模型文件 or huggingface远程仓库
vector_store_path = './cache'
docs_path = './docs'
config = LangChainCFG()
application = LangChainApplication(config)
def get_file_list():
if not os.path.exists("docs"):
return []
return [f for f in os.listdir("docs")]
file_list = get_file_list()
def upload_file(file):
if not os.path.exists("docs"):
os.mkdir("docs")
filename = os.path.basename(file.name)
shutil.move(file.name, "docs/" + filename)
# file_list首位插入新上传的文件
file_list.insert(0, filename)
application.source_service.add_document("docs/" + filename)
return gr.Dropdown.update(choices=file_list, value=filename)
def clear_session():
return '', None
def predict(input,
large_language_model,
embedding_model,
history=None):
# print(large_language_model, embedding_model)
print(input)
if history == None:
history = []
resp = application.get_knowledge_based_answer(
query=input,
history_len=1,
temperature=0.1,
top_p=0.9,
chat_history=history
)
history.append((input, resp['result']))
search_text = ''
for idx, source in enumerate(resp['source_documents'][:2]):
sep = f'----------【搜索结果{idx}:】---------------\n'
search_text += f'{sep}\n{source.page_content}\n\n'
print(search_text)
return '', history, history, search_text
block = gr.Blocks()
with block as demo:
gr.Markdown("""<h1><center>Chinese-LangChain</center></h1>
<center><font size=3>
</center></font>
""")
state = gr.State()
with gr.Row():
with gr.Column(scale=1):
embedding_model = gr.Dropdown([
"text2vec-base"
],
label="Embedding model",
value="text2vec-base")
large_language_model = gr.Dropdown(
[
"ChatGLM-6B-int4",
],
label="large language model",
value="ChatGLM-6B-int4")
top_k = gr.Slider(1,
20,
value=2,
step=1,
label="向量匹配 top k",
interactive=True)
kg_name = gr.Radio(['中文维基百科', '百度百科数据', '坦克世界'],
label="知识库",
value='中文维基百科',
interactive=True)
file = gr.File(label="将文件上传到数据库",
visible=True,
file_types=['.txt', '.md', '.docx', '.pdf']
)
file.upload(upload_file,
inputs=file,
outputs=None)
with gr.Column(scale=4):
with gr.Row():
with gr.Column(scale=4):
chatbot = gr.Chatbot(label='Chinese-LangChain').style(height=400)
message = gr.Textbox(label='请输入问题')
with gr.Row():
clear_history = gr.Button("🧹 清除历史对话")
send = gr.Button("🚀 发送")
with gr.Column(scale=2):
search = gr.Textbox(label='搜索结果')
# 发送按钮 提交
send.click(predict,
inputs=[
message, large_language_model,
embedding_model, state
],
outputs=[message, chatbot, state, search])
# 清空历史对话按钮 提交
clear_history.click(fn=clear_session,
inputs=[],
outputs=[chatbot, state],
queue=False)
# 输入框 回车
message.submit(predict,
inputs=[
message, large_language_model,
embedding_model, state
],
outputs=[message, chatbot, state, search])
gr.Markdown("""提醒:<br>
有任何使用问题[Github Issue区](https://github.com/yanqiangmiffy/Chinese-LangChain)进行反馈. <br>
""")
demo.queue(concurrency_count=2).launch(
server_name='0.0.0.0',
server_port=8888,
share=False,
show_error=True,
debug=True,
enable_queue=True
)
|