Spaces:
Running
Running
import streamlit as st | |
import pandas as pd | |
from transformers import pipeline | |
from sklearn.metrics.pairwise import cosine_similarity | |
from sentence_transformers import SentenceTransformer | |
import numpy as np | |
# Set modern page configuration | |
st.set_page_config(page_title="News Analyzer", layout="wide") | |
# Inject custom CSS for sleek dark blue theme with black fonts | |
st.markdown(""" | |
<style> | |
/* Global Styling */ | |
body { | |
background: #0b132b; | |
color: black; | |
font-family: 'Arial', sans-serif; | |
} | |
/* Header Styling */ | |
.custom-header { | |
background: linear-gradient(to right, #1f4068, #1b1b2f); | |
padding: 1.5rem; | |
border-radius: 12px; | |
text-align: center; | |
color: white; | |
font-size: 30px; | |
font-weight: bold; | |
box-shadow: 0px 4px 15px rgba(0, 217, 255, 0.3); | |
} | |
/* Card Container */ | |
.glass-container { | |
background: rgba(255, 255, 255, 0.08); | |
border-radius: 15px; | |
padding: 25px; | |
backdrop-filter: blur(15px); | |
box-shadow: 0px 4px 20px rgba(0, 217, 255, 0.2); | |
transition: transform 0.3s ease-in-out; | |
} | |
.glass-container:hover { | |
transform: scale(1.02); | |
} | |
/* Buttons */ | |
.stButton>button { | |
background: linear-gradient(45deg, #0072ff, #00c6ff); | |
color: black; | |
border-radius: 8px; | |
padding: 14px 28px; | |
font-size: 18px; | |
transition: 0.3s ease; | |
border: none; | |
} | |
.stButton>button:hover { | |
transform: scale(1.05); | |
box-shadow: 0px 4px 10px rgba(0, 255, 255, 0.5); | |
} | |
/* Text Input */ | |
.stTextInput>div>div>input { | |
background-color: rgba(255, 255, 255, 0.1); | |
border-radius: 8px; | |
color: black; | |
padding: 12px; | |
font-size: 18px; | |
} | |
/* Dataframe Container */ | |
.dataframe-container { | |
background: rgba(255, 255, 255, 0.1); | |
padding: 15px; | |
border-radius: 12px; | |
color: black; | |
} | |
/* Answer Display Box - Larger */ | |
.answer-box { | |
background: rgba(0, 217, 255, 0.15); | |
padding: 35px; | |
border-radius: 15px; | |
border: 2px solid rgba(0, 217, 255, 0.6); | |
color: black; | |
font-size: 22px; | |
text-align: center; | |
margin-bottom: 20px; | |
min-height: 150px; | |
box-shadow: 0px 2px 12px rgba(0, 217, 255, 0.3); | |
display: flex; | |
align-items: center; | |
justify-content: center; | |
transition: all 0.3s ease; | |
} | |
/* CSV Display Box */ | |
.csv-box { | |
background: rgba(255, 255, 255, 0.1); | |
padding: 15px; | |
border-radius: 12px; | |
margin-top: 20px; | |
box-shadow: 0px 2px 12px rgba(0, 217, 255, 0.3); | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
# Modern Header | |
st.markdown("<div class='custom-header'> 🧩 AI-Powered News Analyzer</div>", unsafe_allow_html=True) | |
# Load the Hugging Face model | |
pipe = pipeline("question-answering", model="distilbert/distilbert-base-cased-distilled-squad") | |
# Initialize sentence transformer model | |
sentence_model = SentenceTransformer('all-MiniLM-L6-v2') # Pre-trained sentence model | |
# Responsive Layout - Uses full width | |
col1, col2 = st.columns([1.1, 1]) | |
# Left Section - File Upload & CSV/Excel Display | |
with col1: | |
st.markdown("<div class='glass-container'>", unsafe_allow_html=True) | |
st.subheader("📂 Upload News Data") | |
uploaded_file = st.file_uploader("Upload a CSV or Excel file", type=["csv", "xlsx"]) | |
if uploaded_file is not None: | |
# Determine the file extension | |
file_extension = uploaded_file.name.split('.')[-1] | |
if file_extension == 'csv': | |
df = pd.read_csv(uploaded_file) | |
elif file_extension == 'xlsx': | |
df = pd.read_excel(uploaded_file) | |
# Download button | |
st.download_button( | |
label="⬇️ Download Processed Data", | |
data=df.to_csv(index=False).encode('utf-8'), | |
file_name="output.csv", | |
mime="text/csv" | |
) | |
# CSV Preview Box | |
st.markdown("<div class='csv-box'><h4 style='color: black;'>📜 CSV/Excel Preview</h4>", unsafe_allow_html=True) | |
st.dataframe(df, use_container_width=True) | |
st.markdown("</div>", unsafe_allow_html=True) | |
st.markdown("</div>", unsafe_allow_html=True) | |
# Right Section - Q&A Interface | |
with col2: | |
st.markdown("<div class='glass-container'>", unsafe_allow_html=True) | |
st.subheader("🤖 AI Assistant") | |
# Answer Display Box (Initially Empty) | |
answer_placeholder = st.empty() | |
answer_placeholder.markdown("<div class='answer-box'></div>", unsafe_allow_html=True) | |
# Question Input | |
st.markdown("### 🔍 Ask Your Question:") | |
user_question = st.text_input("Enter your question here", label_visibility="hidden") # Hides the label | |
# Button & Answer Display | |
if st.button("🔮 Get Answer"): | |
if user_question.strip() and uploaded_file is not None: | |
with st.spinner("⏳ Wait, our agent will look into that..."): | |
# Extract the 1st column as context (0-indexed) | |
context = df.iloc[:, 0].dropna().tolist() | |
# Generate embeddings for the context rows and the question | |
context_embeddings = sentence_model.encode(context) | |
question_embedding = sentence_model.encode([user_question]) | |
# Calculate cosine similarity | |
similarities = cosine_similarity(question_embedding, context_embeddings) | |
top_indices = similarities[0].argsort()[-5:][::-1] # Get top 5 similar rows | |
# Prepare the top 5 similar context rows | |
top_context = "\n".join([context[i] for i in top_indices]) | |
# Get answer from Hugging Face model using top context | |
result = pipe(question=user_question, context=top_context) | |
answer = result['answer'] | |
else: | |
answer = "⚠️ Please upload a valid file first!" | |
answer_placeholder.markdown(f"<div class='answer-box'>{answer}</div>", unsafe_allow_html=True) | |
st.markdown("</div>", unsafe_allow_html=True) | |