import streamlit as st import pandas as pd from transformers import pipeline from sklearn.metrics.pairwise import cosine_similarity from sentence_transformers import SentenceTransformer import numpy as np # Set modern page configuration st.set_page_config(page_title="News Analyzer", layout="wide") # Inject custom CSS for sleek dark blue theme with black fonts st.markdown(""" """, unsafe_allow_html=True) # Modern Header st.markdown("
🧩 AI-Powered News Analyzer
", unsafe_allow_html=True) # Load the Hugging Face model pipe = pipeline("question-answering", model="distilbert/distilbert-base-cased-distilled-squad") # Initialize sentence transformer model sentence_model = SentenceTransformer('all-MiniLM-L6-v2') # Pre-trained sentence model # Responsive Layout - Uses full width col1, col2 = st.columns([1.1, 1]) # Left Section - File Upload & CSV/Excel Display with col1: st.markdown("
", unsafe_allow_html=True) st.subheader("📂 Upload News Data") uploaded_file = st.file_uploader("Upload a CSV or Excel file", type=["csv", "xlsx"]) if uploaded_file is not None: # Determine the file extension file_extension = uploaded_file.name.split('.')[-1] if file_extension == 'csv': df = pd.read_csv(uploaded_file) elif file_extension == 'xlsx': df = pd.read_excel(uploaded_file) # Download button st.download_button( label="⬇️ Download Processed Data", data=df.to_csv(index=False).encode('utf-8'), file_name="output.csv", mime="text/csv" ) # CSV Preview Box st.markdown("

📜 CSV/Excel Preview

", unsafe_allow_html=True) st.dataframe(df, use_container_width=True) st.markdown("
", unsafe_allow_html=True) st.markdown("
", unsafe_allow_html=True) # Right Section - Q&A Interface with col2: st.markdown("
", unsafe_allow_html=True) st.subheader("🤖 AI Assistant") # Answer Display Box (Initially Empty) answer_placeholder = st.empty() answer_placeholder.markdown("
", unsafe_allow_html=True) # Question Input st.markdown("### 🔍 Ask Your Question:") user_question = st.text_input("Enter your question here", label_visibility="hidden") # Hides the label # Button & Answer Display if st.button("🔮 Get Answer"): if user_question.strip() and uploaded_file is not None: with st.spinner("⏳ Wait, our agent will look into that..."): # Extract the 1st column as context (0-indexed) context = df.iloc[:, 0].dropna().tolist() # Generate embeddings for the context rows and the question context_embeddings = sentence_model.encode(context) question_embedding = sentence_model.encode([user_question]) # Calculate cosine similarity similarities = cosine_similarity(question_embedding, context_embeddings) top_indices = similarities[0].argsort()[-5:][::-1] # Get top 5 similar rows # Prepare the top 5 similar context rows top_context = "\n".join([context[i] for i in top_indices]) # Get answer from Hugging Face model using top context result = pipe(question=user_question, context=top_context) answer = result['answer'] else: answer = "⚠️ Please upload a valid file first!" answer_placeholder.markdown(f"
{answer}
", unsafe_allow_html=True) st.markdown("
", unsafe_allow_html=True)