Spaces:
Sleeping
Sleeping
main file
Browse files
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import imutils
|
6 |
+
import easyocr
|
7 |
+
from PIL import Image
|
8 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification
|
9 |
+
|
10 |
+
# Load the model and image processor
|
11 |
+
processor = AutoImageProcessor.from_pretrained("beingamit99/car_damage_detection")
|
12 |
+
model = AutoModelForImageClassification.from_pretrained("beingamit99/car_damage_detection")
|
13 |
+
|
14 |
+
# Define the function that takes an image as input and returns a text output
|
15 |
+
def classify_image(input_image):
|
16 |
+
# Load and process the image
|
17 |
+
image = np.array(input_image)
|
18 |
+
inputs = processor(images=image, return_tensors="pt")
|
19 |
+
|
20 |
+
# Make predictions
|
21 |
+
outputs = model(**inputs)
|
22 |
+
logits = outputs.logits.detach().cpu().numpy()
|
23 |
+
predicted_class_id = np.argmax(logits)
|
24 |
+
predicted_proba = np.max(logits)
|
25 |
+
label_map = model.config.id2label
|
26 |
+
predicted_class_name = label_map[predicted_class_id]
|
27 |
+
|
28 |
+
# OCR
|
29 |
+
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
30 |
+
bfilter = cv2.bilateralFilter(gray, 11, 17, 17)
|
31 |
+
edged = cv2.Canny(bfilter, 30, 200)
|
32 |
+
keypoints = cv2.findContours(edged.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
33 |
+
contours = imutils.grab_contours(keypoints)
|
34 |
+
contours = sorted(contours, key=cv2.contourArea, reverse=True)[:10]
|
35 |
+
location = None
|
36 |
+
for contour in contours:
|
37 |
+
approx = cv2.approxPolyDP(contour, 10, True)
|
38 |
+
if len(approx) == 4:
|
39 |
+
location = approx
|
40 |
+
break
|
41 |
+
mask = np.zeros(gray.shape, np.uint8)
|
42 |
+
new_image = cv2.drawContours(mask, [location], 0, 255, -1)
|
43 |
+
new_image = cv2.bitwise_and(image, image, mask=mask)
|
44 |
+
(x, y) = np.where(mask == 255)
|
45 |
+
(x1, y1) = (np.min(x), np.min(y))
|
46 |
+
(x2, y2) = (np.max(x), np.max(y))
|
47 |
+
cropped_image = gray[x1:x2+3, y1:y2+3]
|
48 |
+
reader = easyocr.Reader(['en'])
|
49 |
+
result = reader.readtext(cropped_image)
|
50 |
+
text = result[0][1]
|
51 |
+
|
52 |
+
# Return the results
|
53 |
+
return f"Predicted class: {predicted_class_name} (probability: {predicted_proba:.4f}", text
|
54 |
+
|
55 |
+
# Create Gradio interface
|
56 |
+
input_image = gr.components.Image()
|
57 |
+
output_text = gr.components.Text()
|
58 |
+
output_text2 = gr.components.Text()
|
59 |
+
|
60 |
+
gr.Interface(fn=classify_image, inputs=input_image, outputs=[output_text, output_text2], title="AutoVision").launch(debug = 1)
|