import streamlit as st from transformers import pipeline from PIL import Image #import tensorflow import torch ##BLIP # Create the caption pipeline initial_caption_pipe = pipeline('image-to-text', model="Salesforce/blip-image-captioning-large") # Display the image using Streamlit uploaded_image = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"]) if uploaded_image is not None: image= Image.open(uploaded_image) st.image(image, caption="Uploaded Image", use_column_width=True) image = Image.open(uploaded_image) initial_caption = initial_caption_pipe(image) initial_caption = initial_caption[0]['generated_text'] ##CLIP from transformers import CLIPProcessor, CLIPModel model_id = "openai/clip-vit-large-patch14" processor = CLIPProcessor.from_pretrained(model_id) model = CLIPModel.from_pretrained(model_id) scene_labels=['Arrest', 'Arson', 'Explosion', 'public fight', 'Normal', 'Road Accident', 'Robbery', 'Shooting', 'Stealing', 'Vandalism', 'Suspicious activity', 'Tailgating', 'Unauthorized entry', 'Protest/Demonstration', 'Drone suspicious activity', 'Fire/Smoke detection', 'Medical emergency', 'Suspicious package/object', 'Threatening', 'Attack', 'Shoplifting', 'burglary ', 'distress', 'assault'] image = Image.open(uploaded_image) inputs = processor(text=scene_labels, images=image, return_tensors="pt", padding=True) outputs = model(**inputs) logits_per_image = outputs.logits_per_image # this is the image-text similarity score probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities context_raw= scene_labels[probs.argmax(-1)] context= 'the image is depicting scene of '+ context_raw ##LLM GOOGLE_API_KEY = st.text_input("Please enter your GOOGLE GEMINI API KEY", type="password") os.environ['GOOGLE_API_KEY'] = GOOGLE_API_KEY from langchain_google_genai import ChatGoogleGenerativeAI from langchain.prompts import PromptTemplate from google.generativeai.types.safety_types import HarmBlockThreshold, HarmCategory llm = ChatGoogleGenerativeAI(model="gemini-1.0-pro-latest", google_api_key=GOOGLE_API_KEY, temperature=0.2, top_p=1, top_k=1, safety_settings={ HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE, HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE, HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE, HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE, }, ) template="""You are an advanced image captioning AI assistant for surveillance related images. Your task is to refine and improve an initial image caption using relevant contextual information provided. You will receive two inputs: Input 1: {initial_caption} - This is the initial caption for the image, most likely grammatically incorrect and incomplete sentence, generated by a separate not so good image captioning model. Input 2: {context} - This is the contextual information that provides more details about the background Your goal is to take the initial caption and the additional context, and produce a new, refined caption that incorporates the contextual details. Please do not speculate things which are not provided. The final caption should be grammatically correct. Please output only the final caption.""" prompt_template = PromptTemplate( template=template, input_variables=["initial_caption", "context"], ) prompt=prompt_template.format(initial_caption=initial_caption, context=context) response = llm.invoke(prompt) final_caption = response.content # Generate the caption if st.button("Generate Caption"): st.write(final_caption)