Spaces:
Sleeping
Sleeping
File size: 9,308 Bytes
daef31d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
from pyrogram import Client, filters
from config import API_ID, API_HASH, BOT_TOKEN, HUGGINGFACE_TOKEN
import requests
import os
import asyncio
import json
from datetime import datetime
# Add these constants at the top
API_URL = "https://api-inference.huggingface.co/models/openai/whisper-large-v3-turbo"
AI_URL = "https://charan5775-fastest.hf.space/t2t"
AI_HEADERS = {
"Content-Type": "application/json",
"Accept": "application/json"
}
# Initialize message history in memory only
message_history = []
# Create a new Client instance with a custom session name and no local storage
app = Client(
"my_bot",
api_id=API_ID,
api_hash=API_HASH,
bot_token=BOT_TOKEN,
in_memory=True # This prevents SQLite database locks
)
def save_message_to_history(user_id, username, message_type, content, bot_response=None):
message_data = {
"content": content,
"response": bot_response
}
message_history.append(message_data)
print("Message History Update:", json.dumps(message_data, indent=2))
# Add command to print history
@app.on_message(filters.command("history"))
async def history_command(client, message):
if not message_history:
await message.reply_text("No message history available.")
return
try:
# Create a formatted message
history_text = "📜 Message History:\n\n"
for idx, msg in enumerate(message_history[-10:], 1): # Show last 10 messages
history_text += f"{idx}. Message: {msg['content']}\n"
if msg['response']:
history_text += f" Response: {msg['response']}\n"
history_text += "\n"
await message.reply_text(history_text)
except Exception as e:
await message.reply_text(f"Error retrieving history: {str(e)}")
# Command handler for /start
@app.on_message(filters.command("start"))
async def start_command(client, message):
await message.reply_text("Hello! I'm your Telegram bot. Nice to meet you!")
# Command handler for /help
@app.on_message(filters.command("help"))
async def help_command(client, message):
help_text = """
Available commands:
/start - Start the bot
/help - Show this help message
"""
await message.reply_text(help_text)
# Message handler for regular text messages
@app.on_message(filters.text & filters.private & ~filters.command(["start", "help", "info"]))
async def echo(client, message):
try:
thinking_msg = await message.reply_text("🤔 Thinking about your message...")
ai_response = await get_ai_response(message.text)
await thinking_msg.delete()
await message.reply_text(ai_response)
# Save message to history
save_message_to_history(
message.from_user.id,
message.from_user.username,
"text",
message.text,
ai_response
)
except Exception as e:
await message.reply_text(f"Sorry, I couldn't process your message: {str(e)}")
# Handle photo messages
@app.on_message(filters.photo)
async def handle_photo(client, message):
response = "Nice photo!"
await message.reply_text(response)
save_message_to_history(
message.from_user.id,
message.from_user.username,
"photo",
"Photo message",
response
)
# Handle sticker messages
@app.on_message(filters.sticker)
async def handle_sticker(client, message):
response = "Cool sticker!"
await message.reply_text(response)
save_message_to_history(
message.from_user.id,
message.from_user.username,
"sticker",
"Sticker message",
response
)
# Custom command example
@app.on_message(filters.command("info"))
async def info_command(client, message):
user = message.from_user
info_text = f"""
User Information:
ID: {user.id}
Name: {user.first_name}
Username: @{user.username if user.username else 'None'}
"""
await message.reply_text(info_text)
# Add this function after your existing imports
async def transcribe_audio(file_path):
try:
with open(file_path, "rb") as f:
data = f.read()
response = requests.post(API_URL, data=data)
return response.json().get('text', 'Could not transcribe audio')
except Exception as e:
print(f"Error in transcription: {e}")
return "Error transcribing audio"
# Add this new function after transcribe_audio function
async def get_ai_response(text):
try:
# Create condensed history from all messages
context = ""
if message_history:
# If we have more than 10 messages, summarize older ones
if len(message_history) > 10:
older_messages = message_history[:-10]
recent_messages = message_history[-10:]
# Summarize older messages in pairs to save space
context = "Earlier conversation summary:\n"
for i in range(0, len(older_messages), 2):
pair = older_messages[i:i+2]
combined_content = " | ".join(msg['content'] for msg in pair)
if len(combined_content) > 100:
combined_content = combined_content[:100] + "..."
context += f"Chat: {combined_content}\n"
# Add a separator
context += "\nRecent conversation:\n"
# Add recent messages in full detail
for msg in recent_messages:
if msg['content'] and msg['response']:
context += f"Human: {msg['content']}\nAssistant: {msg['response']}\n"
else:
# If less than 10 messages, include all in detail
context = "Conversation history:\n"
for msg in message_history:
if msg['content'] and msg['response']:
context += f"Human: {msg['content']}\nAssistant: {msg['response']}\n"
# Combine context with current query
full_query = f"{context}Human: {text}"
payload = {
"query": full_query,
"stream": False
}
response = requests.post(AI_URL, json=payload)
print(f"Raw API Response: {response.text}") # Debug print
if response.status_code != 200:
print(f"API Error: Status {response.status_code}")
return f"Sorry, the AI service returned an error (Status {response.status_code})"
response_data = response.json()
print(f"Parsed Response Data: {response_data}") # Debug print
# The API returns the response directly
if isinstance(response_data, dict) and 'response' in response_data:
return response_data['response']
else:
return str(response_data)
except requests.exceptions.RequestException as e:
print(f"Network error: {e}")
return "Sorry, I'm having trouble connecting to the AI service."
except json.JSONDecodeError as e:
print(f"JSON parsing error: {e}\nResponse text: {response.text}")
return "Sorry, I received an invalid response from the AI service."
except Exception as e:
print(f"Error getting AI response: {str(e)}\nFull error: {repr(e)}")
return "Sorry, I couldn't process your message."
# Update the voice message handler with retry logic
@app.on_message(filters.voice | filters.audio)
async def handle_voice(client, message):
try:
# Send a processing message
processing_msg = await message.reply_text("🎵 Processing your voice message...")
# Download the voice message with retry logic
max_retries = 3
for attempt in range(max_retries):
try:
message = await app.get_messages(
message.chat.id,
message.id
)
voice_file = await message.download()
break
except Exception as e:
if attempt == max_retries - 1:
raise e
await asyncio.sleep(1)
transcription = await transcribe_audio(voice_file)
await message.reply_text(f"🗣️ Transcription:\n\n{transcription}")
thinking_msg = await message.reply_text("🤔 Thinking about your message...")
ai_response = await get_ai_response(transcription)
await thinking_msg.delete()
await message.reply_text(ai_response)
# Save voice message to history
save_message_to_history(
message.from_user.id,
message.from_user.username,
"voice",
transcription,
ai_response
)
# Clean up
try:
os.remove(voice_file)
await processing_msg.delete()
except:
pass
except Exception as e:
error_message = f"Sorry, there was an error processing your message: {str(e)}"
print(error_message)
await message.reply_text(error_message)
# Run the bot
if __name__ == "__main__":
print("Bot is running...")
app.run() |