Spaces:
Sleeping
Sleeping
File size: 18,718 Bytes
e7d2278 88bd492 471c575 e7d2278 854aaf2 e7d2278 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
from fastapi import FastAPI, HTTPException, UploadFile, File, Form, Depends
from typing import Optional
from fastapi.responses import StreamingResponse, JSONResponse, HTMLResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from huggingface_hub import InferenceClient
from pydantic import BaseModel, ConfigDict
import os
from base64 import b64encode
from io import BytesIO
from PIL import Image, ImageEnhance
import logging
import pytesseract
import time
import subprocess
subprocess.Popen(["python", "main.py"])
# Set Tesseract CMD path for Windows
#pytesseract.pytesseract.tesseract_cmd = r"F:\Python-files\tesseract\tesseract.exe"
app = FastAPI()
# Configure logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
# Default model
DEFAULT_MODEL = "meta-llama/Meta-Llama-3-8B-Instruct"
# Initialize Jinja2 templates
templates = Jinja2Templates(directory="templates")
class TextRequest(BaseModel):
model_config = ConfigDict(protected_namespaces=())
query: str
stream: bool = False
model_name: Optional[str] = None
class ImageTextRequest(BaseModel):
model_config = ConfigDict(protected_namespaces=())
query: str
stream: bool = False
model_name: Optional[str] = None
@classmethod
def as_form(
cls,
query: str = Form(...),
stream: bool = Form(False),
model_name: Optional[str] = Form(None),
image: UploadFile = File(...) # Make image required for i2t2t
):
return cls(
query=query,
stream=stream,
model_name=model_name
), image
def get_client(model_name: Optional[str] = None):
"""Get inference client for specified model or default model"""
try:
model_path = model_name if model_name and model_name.strip() else DEFAULT_MODEL
return InferenceClient(
model=model_path
)
except Exception as e:
raise HTTPException(
status_code=400,
detail=f"Error initializing model {model_path}: {str(e)}"
)
def generate_text_response(query: str, model_name: Optional[str] = None):
messages = [{
"role": "user",
"content": f"[SYSTEM] You are ASSISTANT who answer question asked by user in short and concise manner. [USER] {query}"
}]
try:
client = get_client(model_name)
for message in client.chat_completion(
messages,
max_tokens=2048,
stream=True
):
token = message.choices[0].delta.content
yield token
except Exception as e:
yield f"Error generating response: {str(e)}"
def generate_image_text_response(query: str, image_data: str, model_name: Optional[str] = None):
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": f"[SYSTEM] You are ASSISTANT who answer question asked by user in short and concise manner. [USER] {query}"},
{"type": "image_url", "image_url": {"url": f"data:image/*;base64,{image_data}"}}
]
}
]
logger.debug(f"Messages sent to API: {messages}")
try:
client = get_client(model_name)
for message in client.chat_completion(messages, max_tokens=2048, stream=True):
logger.debug(f"Received message chunk: {message}")
token = message.choices[0].delta.content
yield token
except Exception as e:
logger.error(f"Error in generate_image_text_response: {str(e)}")
yield f"Error generating response: {str(e)}"
def preprocess_image(img):
"""Enhance image for better OCR results"""
# Convert to grayscale
img = img.convert('L')
# Enhance contrast
enhancer = ImageEnhance.Contrast(img)
img = enhancer.enhance(2.0)
# Enhance sharpness
enhancer = ImageEnhance.Sharpness(img)
img = enhancer.enhance(1.5)
return img
@app.get("/")
async def root():
return {"message": "Welcome to FastAPI server!"}
@app.post("/t2t")
async def text_to_text(request: TextRequest):
try:
if request.stream:
return StreamingResponse(
generate_text_response(request.query, request.model_name),
media_type="text/event-stream"
)
else:
response = ""
for chunk in generate_text_response(request.query, request.model_name):
response += chunk
return {"response": response}
except Exception as e:
logger.error(f"Error in /t2t endpoint: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/i2t2t")
async def image_text_to_text(form_data: tuple[ImageTextRequest, UploadFile] = Depends(ImageTextRequest.as_form)):
form, image = form_data
try:
# Process image
contents = await image.read()
try:
logger.debug("Attempting to open image")
img = Image.open(BytesIO(contents))
if img.mode != 'RGB':
img = img.convert('RGB')
buffer = BytesIO()
img.save(buffer, format="PNG")
image_data = b64encode(buffer.getvalue()).decode('utf-8')
logger.debug("Image processed and encoded to base64")
except Exception as img_error:
logger.error(f"Error processing image: {str(img_error)}")
raise HTTPException(
status_code=422,
detail=f"Error processing image: {str(img_error)}"
)
if form.stream:
return StreamingResponse(
generate_image_text_response(form.query, image_data, form.model_name),
media_type="text/event-stream"
)
else:
response = ""
for chunk in generate_image_text_response(form.query, image_data, form.model_name):
response += chunk
return {"response": response}
except Exception as e:
logger.error(f"Error in /i2t2t endpoint: {str(e)}")
raise HTTPException(status_code=500, detail=str(e))
@app.post("/tes")
async def ocr_endpoint(image: UploadFile = File(...)):
try:
# Read and process the image
contents = await image.read()
img = Image.open(BytesIO(contents))
# Preprocess the image
img = preprocess_image(img)
# Perform OCR with timeout and retries
max_retries = 3
text = ""
for attempt in range(max_retries):
try:
text = pytesseract.image_to_string(
img,
timeout=30, # 30 second timeout
config='--oem 3 --psm 6'
)
break
except Exception as e:
if attempt == max_retries - 1:
raise HTTPException(
status_code=500,
detail=f"Error extracting text: {str(e)}"
)
time.sleep(1) # Wait before retry
return {"text": text}
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"Error processing image: {str(e)}"
)
@app.get("/docs/guide", response_class=HTMLResponse)
async def api_guide():
html_content = '''
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>API Documentation</title>
<link href="https://cdn.jsdelivr.net/npm/[email protected]/dist/tailwind.min.css" rel="stylesheet">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/prism/1.24.1/themes/prism-tomorrow.min.css">
<style>
.copy-button {
position: absolute;
top: 8px;
right: 8px;
padding: 4px 8px;
background: #2d3748;
border: 1px solid #4a5568;
border-radius: 4px;
color: #cbd5e0;
font-size: 12px;
cursor: pointer;
transition: all 0.2s;
}
.copy-button:hover {
background: #4a5568;
}
.code-block {
position: relative;
margin: 1rem 0;
}
.endpoint-card {
background: #1a202c;
border-radius: 8px;
margin-bottom: 2rem;
padding: 1.5rem;
}
.language-tab {
cursor: pointer;
padding: 0.5rem 1rem;
border-radius: 4px 4px 0 0;
}
.language-tab.active {
background: #2d3748;
color: #fff;
}
</style>
</head>
<body class="bg-gray-900 text-gray-100 min-h-screen p-8">
<div class="max-w-6xl mx-auto">
<h1 class="text-4xl font-bold mb-8">API Documentation</h1>
<!-- T2T Endpoint -->
<div class="endpoint-card">
<h2 class="text-2xl font-semibold mb-4">Text-to-Text Endpoint</h2>
<p class="mb-4 text-gray-400">Endpoint for general text queries</p>
<p class="mb-2 text-gray-300"><span class="font-mono bg-gray-800 px-2 py-1 rounded">POST /t2t</span></p>
<div class="code-block">
<div class="flex mb-2">
<div class="language-tab active" data-lang="curl">cURL</div>
<div class="language-tab" data-lang="python">Python</div>
<div class="language-tab" data-lang="javascript">JavaScript</div>
<div class="language-tab" data-lang="node">Node.js</div>
</div>
<pre><code class="language-bash">curl -X POST "http://localhost:8000/t2t" \
-H "Content-Type: application/json" \
-d '{"query": "What is FastAPI?", "stream": false}'</code></pre>
<button class="copy-button">Copy</button>
</div>
</div>
<!-- I2T2T Endpoint -->
<div class="endpoint-card">
<h2 class="text-2xl font-semibold mb-4">Image and Text to Text Endpoint</h2>
<p class="mb-4 text-gray-400">Endpoint for queries about images</p>
<p class="mb-2 text-gray-300"><span class="font-mono bg-gray-800 px-2 py-1 rounded">POST /i2t2t</span></p>
<div class="code-block">
<div class="flex mb-2">
<div class="language-tab active" data-lang="curl">cURL</div>
<div class="language-tab" data-lang="python">Python</div>
<div class="language-tab" data-lang="javascript">JavaScript</div>
<div class="language-tab" data-lang="node">Node.js</div>
</div>
<pre><code class="language-bash">curl -X POST "http://localhost:8000/i2t2t" \
-F "query=Describe this image" \
-F "stream=false" \
-F "image=@/path/to/your/image.jpg"</code></pre>
<button class="copy-button">Copy</button>
</div>
</div>
<!-- TES Endpoint -->
<div class="endpoint-card">
<h2 class="text-2xl font-semibold mb-4">OCR Endpoint</h2>
<p class="mb-4 text-gray-400">Extract text from images using OCR</p>
<p class="mb-2 text-gray-300"><span class="font-mono bg-gray-800 px-2 py-1 rounded">POST /tes</span></p>
<div class="code-block">
<div class="flex mb-2">
<div class="language-tab active" data-lang="curl">cURL</div>
<div class="language-tab" data-lang="python">Python</div>
<div class="language-tab" data-lang="javascript">JavaScript</div>
<div class="language-tab" data-lang="node">Node.js</div>
</div>
<pre><code class="language-bash">curl -X POST "http://localhost:8000/tes" \
-F "image=@/path/to/your/image.jpg"</code></pre>
<button class="copy-button">Copy</button>
</div>
</div>
</div>
<script src="https://cdnjs.cloudflare.com/ajax/libs/prism/1.24.1/prism.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/prism/1.24.1/components/prism-python.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/prism/1.24.1/components/prism-javascript.min.js"></script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/prism/1.24.1/components/prism-bash.min.js"></script>
<script>
const codeExamples = {
't2t': {
'curl': `curl -X POST "http://localhost:8000/t2t" \\
-H "Content-Type: application/json" \\
-d '{"query": "What is FastAPI?", "stream": false}'`,
'python': `import requests
url = "http://localhost:8000/t2t"
payload = {
"query": "What is FastAPI?",
"stream": False
}
response = requests.post(url, json=payload)
print(response.json())`,
'javascript': `// Using fetch
fetch("http://localhost:8000/t2t", {
method: "POST",
headers: {
"Content-Type": "application/json",
},
body: JSON.stringify({
query: "What is FastAPI?",
stream: false
})
})
.then(response => response.json())
.then(data => console.log(data));`,
'node': `const axios = require('axios');
async function makeRequest() {
try {
const response = await axios.post('http://localhost:8000/t2t', {
query: "What is FastAPI?",
stream: false
});
console.log(response.data);
} catch (error) {
console.error(error);
}
}
makeRequest();`
},
'i2t2t': {
'curl': `curl -X POST "http://localhost:8000/i2t2t" \\
-F "query=Describe this image" \\
-F "stream=false" \\
-F "image=@/path/to/your/image.jpg"`,
'python': `import requests
url = "http://localhost:8000/i2t2t"
files = {
'image': ('image.jpg', open('path/to/image.jpg', 'rb')),
}
data = {
'query': 'Describe this image',
'stream': 'false'
}
response = requests.post(url, files=files, data=data)
print(response.json())`,
'javascript': `const formData = new FormData();
formData.append('image', imageFile);
formData.append('query', 'Describe this image');
formData.append('stream', 'false');
fetch("http://localhost:8000/i2t2t", {
method: "POST",
body: formData
})
.then(response => response.json())
.then(data => console.log(data));`,
'node': `const axios = require('axios');
const FormData = require('form-data');
const fs = require('fs');
async function makeRequest() {
try {
const formData = new FormData();
formData.append('image', fs.createReadStream('path/to/image.jpg'));
formData.append('query', 'Describe this image');
formData.append('stream', 'false');
const response = await axios.post('http://localhost:8000/i2t2t', formData, {
headers: formData.getHeaders()
});
console.log(response.data);
} catch (error) {
console.error(error);
}
}
makeRequest();`
},
'tes': {
'curl': `curl -X POST "http://localhost:8000/tes" \\
-F "image=@/path/to/your/image.jpg"`,
'python': `import requests
url = "http://localhost:8000/tes"
files = {
'image': ('image.jpg', open('path/to/image.jpg', 'rb'))
}
response = requests.post(url, files=files)
print(response.json())`,
'javascript': `const formData = new FormData();
formData.append('image', imageFile);
fetch("http://localhost:8000/tes", {
method: "POST",
body: formData
})
.then(response => response.json())
.then(data => console.log(data));`,
'node': `const axios = require('axios');
const FormData = require('form-data');
const fs = require('fs');
async function makeRequest() {
try {
const formData = new FormData();
formData.append('image', fs.createReadStream('path/to/image.jpg'));
const response = await axios.post('http://localhost:8000/tes', formData, {
headers: formData.getHeaders()
});
console.log(response.data);
} catch (error) {
console.error(error);
}
}
makeRequest();`
}
};
// Handle language tab switching
document.querySelectorAll('.language-tab').forEach(tab => {
tab.addEventListener('click', () => {
const lang = tab.dataset.lang;
const codeBlock = tab.closest('.endpoint-card');
const endpoint = codeBlock.querySelector('h2').textContent.toLowerCase().includes('ocr') ? 'tes' :
codeBlock.querySelector('h2').textContent.toLowerCase().includes('image') ? 'i2t2t' : 't2t';
// Update active tab
codeBlock.querySelectorAll('.language-tab').forEach(t => t.classList.remove('active'));
tab.classList.add('active');
// Update code content
const code = codeBlock.querySelector('code');
code.textContent = codeExamples[endpoint][lang];
code.className = `language-${lang === 'curl' ? 'bash' : lang}`;
Prism.highlightElement(code);
});
});
// Handle copy buttons
document.querySelectorAll('.copy-button').forEach(button => {
button.addEventListener('click', () => {
const code = button.previousElementSibling.textContent;
navigator.clipboard.writeText(code);
// Show feedback
const originalText = button.textContent;
button.textContent = 'Copied!';
setTimeout(() => {
button.textContent = originalText;
}, 2000);
});
});
</script>
</body>
</html>
'''
return HTMLResponse(content=html_content)
|