CharlieAmalet commited on
Commit
2927d16
·
verified ·
1 Parent(s): f14e7aa

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -19
app.py CHANGED
@@ -16,19 +16,15 @@ import random
16
  from huggingface_hub import login, hf_hub_download
17
  import spaces
18
 
19
- #gradio.helpers.CACHED_FOLDER = '/data/cache'
20
-
21
- # SECRET_TOKEN = os.getenv('SECRET_TOKEN', 'default_secret')
22
-
23
- # HF_API_KEY = os.getenv('HF_API_KEY', '')
24
- # login(token=HF_API_KEY)
25
-
26
  pipe = StableVideoDiffusionPipeline.from_pretrained(
27
  # "stabilityai/stable-video-diffusion-img2vid-xt-1-1",
28
  "vdo/stable-video-diffusion-img2vid-xt-1-1",
29
  torch_dtype=torch.float16,
30
  variant="fp16"
31
  )
 
 
 
32
  pipe.to("cuda")
33
  pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
34
  #pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
@@ -37,7 +33,6 @@ max_64_bit_int = 2**63 - 1
37
 
38
  @spaces.GPU(enable_queue=True)
39
  def generate_video(
40
- secret_token: str,
41
  image: Image,
42
  seed: int,
43
  motion_bucket_id: int = 127,
@@ -48,11 +43,6 @@ def generate_video(
48
  device: str = "cuda",
49
  output_folder: str = "outputs",
50
  ):
51
- # if secret_token != SECRET_TOKEN:
52
- # raise gr.Error(
53
- # f'Invalid secret token. Please fork the original space if you want to use it for yourself.')
54
-
55
-
56
  # note julian: normally we should resize input images, but normally they are already in 1024x576, so..
57
 
58
  # also, I would like to experiment with vertical videos, and 1024x512 videos
@@ -116,11 +106,6 @@ def resize_image(image, output_size=(1024, 576)):
116
  return cropped_image
117
 
118
  with gr.Blocks() as demo:
119
- # secret_token = gr.Text(
120
- # label='Secret Token',
121
- # max_lines=1,
122
- # placeholder='Enter your secret token')
123
-
124
  image = gr.Image(label="Upload your image", type="pil")
125
  generate_btn = gr.Button("Generate")
126
  base64_out = gr.Textbox(label="Base64 Video")
@@ -130,7 +115,6 @@ with gr.Blocks() as demo:
130
 
131
  generate_btn.click(
132
  fn=generate_video,
133
- # inputs=[secret_token, image, seed, motion_bucket_id, fps_id],
134
  inputs=[image, seed, motion_bucket_id, fps_id],
135
  outputs=base64_out,
136
  api_name="run"
 
16
  from huggingface_hub import login, hf_hub_download
17
  import spaces
18
 
 
 
 
 
 
 
 
19
  pipe = StableVideoDiffusionPipeline.from_pretrained(
20
  # "stabilityai/stable-video-diffusion-img2vid-xt-1-1",
21
  "vdo/stable-video-diffusion-img2vid-xt-1-1",
22
  torch_dtype=torch.float16,
23
  variant="fp16"
24
  )
25
+
26
+ pipe.save_pretrained("model", variant="fp16")
27
+
28
  pipe.to("cuda")
29
  pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
30
  #pipe.vae = torch.compile(pipe.vae, mode="reduce-overhead", fullgraph=True)
 
33
 
34
  @spaces.GPU(enable_queue=True)
35
  def generate_video(
 
36
  image: Image,
37
  seed: int,
38
  motion_bucket_id: int = 127,
 
43
  device: str = "cuda",
44
  output_folder: str = "outputs",
45
  ):
 
 
 
 
 
46
  # note julian: normally we should resize input images, but normally they are already in 1024x576, so..
47
 
48
  # also, I would like to experiment with vertical videos, and 1024x512 videos
 
106
  return cropped_image
107
 
108
  with gr.Blocks() as demo:
 
 
 
 
 
109
  image = gr.Image(label="Upload your image", type="pil")
110
  generate_btn = gr.Button("Generate")
111
  base64_out = gr.Textbox(label="Base64 Video")
 
115
 
116
  generate_btn.click(
117
  fn=generate_video,
 
118
  inputs=[image, seed, motion_bucket_id, fps_id],
119
  outputs=base64_out,
120
  api_name="run"