CharlieAmalet commited on
Commit
d87a301
·
verified ·
1 Parent(s): 9dd519f

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +120 -0
app.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import gradio as gr
3
+ import torch
4
+ from PIL import Image, ImageFilter, ImageDraw
5
+ from ultralytics import YOLO
6
+
7
+ MODEL_PATH = "./models/face_yolov8n_v2.pt"
8
+ MODEL = YOLO(MODEL_PATH)
9
+
10
+ def create_rounded_rectangle_mask(image:Image.Image, radius, alpha=255):
11
+ size = image.size
12
+ factor = 5 # Factor to increase the image size that I can later antialiaze the corners
13
+ radius = radius * factor
14
+ image = Image.new('RGBA', (size[0] * factor, size[1] * factor), (0, 0, 0, 0))
15
+
16
+ # create corner
17
+ corner = Image.new('RGBA', (radius, radius), (0, 0, 0, 0))
18
+ draw = ImageDraw.Draw(corner)
19
+ # added the fill = .. you only drew a line, no fill
20
+ draw.pieslice((0, 0, radius * 2, radius * 2), 180, 270, fill=(255, 255, 255, alpha))
21
+
22
+ # max_x, max_y
23
+ mx, my = (size[0] * factor, size[1] * factor)
24
+
25
+ # paste corner rotated as needed
26
+ # use corners alpha channel as mask
27
+ image.paste(corner, (0, 0), corner)
28
+ image.paste(corner.rotate(90), (0, my - radius), corner.rotate(90))
29
+ image.paste(corner.rotate(180), (mx - radius, my - radius), corner.rotate(180))
30
+ image.paste(corner.rotate(270), (mx - radius, 0), corner.rotate(270))
31
+
32
+ # draw both inner rects
33
+ draw = ImageDraw.Draw(image)
34
+ draw.rectangle([(radius, 0), (mx - radius, my)], fill=(255, 255, 255, alpha))
35
+ draw.rectangle([(0, radius), (mx, my - radius)], fill=(255, 255, 255, alpha))
36
+ return image.resize(size, Image.LANCZOS) # Smooth the corners
37
+
38
+ def max_rounding_radius(rect_coords):
39
+ # Extract the coordinates of the rectangle [x0, y0, x1, y1]
40
+ rect_coords = [coord-1 for coord in rect_coords]
41
+ x0, y0, x1, y1 = rect_coords
42
+
43
+ # Calculate the width and height of the rectangle
44
+ width = x1 - x0
45
+ height = y1 - y0
46
+
47
+ # Determine the smallest dimension (width or height)
48
+ min_dimension = min(width, height)
49
+
50
+ # Calculate the maximum radius as half of the smallest dimension
51
+ return min_dimension // 2
52
+
53
+ def generate_image(source_image:Image.Image, confidence=0.3, radius=50, blur_amount=10, margin=0):
54
+ if source_image is None:
55
+ return source_image
56
+
57
+ device = "cuda" if torch.cuda.is_available() else "cpu"
58
+ pred = MODEL(source_image, conf=confidence, device=device)
59
+ bboxes = pred[0].boxes.xyxy.cpu().numpy()
60
+ if bboxes.size == 0:
61
+ result = None
62
+ else:
63
+ bboxes = bboxes.tolist()
64
+ result = source_image.copy()
65
+
66
+ for bboxe in bboxes:
67
+ bboxe = [round(coord) for coord in bboxe]
68
+
69
+ mean_margin = margin // 2
70
+ new_bboxe = bboxe[0]-mean_margin, bboxe[1]-mean_margin, bboxe[2]+mean_margin, bboxe[3]+mean_margin
71
+
72
+ new_x0, new_y0, new_x1, new_y1 = new_bboxe
73
+ new_width = new_x1 - new_x0
74
+ new_height = new_y1 - new_y0
75
+
76
+ if not (new_width > source_image.width or new_height > source_image.height):
77
+ bboxe = new_bboxe
78
+
79
+ # Crop the region of interest
80
+ region = result.crop(bboxe)
81
+
82
+ final_radius = round(max_rounding_radius(bboxe)* (radius/100))
83
+ mask = create_rounded_rectangle_mask(region, final_radius)
84
+
85
+ # Apply blur filter to the cropped region
86
+ blurred_region = region.filter(ImageFilter.GaussianBlur(radius=blur_amount))
87
+
88
+ # Paste the blurred region back onto the original image
89
+ result.paste(blurred_region, bboxe, mask)
90
+
91
+ return result
92
+
93
+ css = """
94
+ img {
95
+ max-height: 500px;
96
+ object-fit: contain;
97
+ }
98
+ """
99
+
100
+ with gr.Blocks(css=css) as FACE_2_BLUR:
101
+ with gr.Row():
102
+ with gr.Column():
103
+ image = gr.Image(label="Upload your image", type="pil")
104
+ generate_btn = gr.Button("Generate")
105
+ confidence = gr.Slider(label="Detection model confidence threshold.", value=0.3, minimum=0.0, maximum=1.0, step=0.01)
106
+ radius = gr.Slider(label="Edges radius in percentage.", value=50, minimum=0, maximum=100, step=1)
107
+ blur_amount = gr.Number(label="Controls the strength of the blur effect.", value=10, minimum=1, maximum=20, step=1)
108
+ margin = gr.Slider(label="Margin to add to the blurred box.", value=0, minimum=0, maximum=200)
109
+
110
+ with gr.Column():
111
+ image_out = gr.Image(label="Blurred face image", type="pil")
112
+
113
+ generate_btn.click(
114
+ fn=generate_image,
115
+ inputs=[image, confidence, radius, blur_amount, margin],
116
+ outputs=image_out,
117
+ api_name="generate_blurred"
118
+ )
119
+
120
+ FACE_2_BLUR.launch()