CharlieAmalet's picture
Update app.py
07dbe58 verified
import torch
torch.jit.script = lambda f: f
import gradio as gr
import spaces
from zoedepth.utils.misc import colorize, save_raw_16bit
from zoedepth.utils.geometry import depth_to_points, create_triangles
from PIL import Image
import numpy as np
css = """
img {
max-height: 500px;
object-fit: contain;
}
"""
# DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
MODEL = torch.hub.load('isl-org/ZoeDepth', "ZoeD_N", pretrained=True).eval()
# ----------- Depth functions
def save_raw_16bit(depth, fpath="raw.png"):
if isinstance(depth, torch.Tensor):
depth = depth.squeeze().cpu().numpy()
# assert isinstance(depth, np.ndarray), "Depth must be a torch tensor or numpy array"
# assert depth.ndim == 2, "Depth must be 2D"
depth = depth * 256 # scale for 16-bit png
depth = depth.astype(np.uint16)
return depth
@spaces.GPU(enable_queue=True)
def process_image(image: Image.Image):
global MODEL
image = image.convert("RGB")
device = "cuda" if torch.cuda.is_available() else "cpu"
MODEL.to(device)
depth = MODEL.infer_pil(image)
processed_array = save_raw_16bit(colorize(depth)[:, :, 0])
return Image.fromarray(processed_array)
# ----------- Depth functions
title = "# ZoeDepth"
description = """Unofficial demo for **ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth**."""
with gr.Blocks(css=css) as API:
gr.Markdown(title)
gr.Markdown(description)
with gr.Tab("Depth Prediction"):
with gr.Row():
inputs=gr.Image(label="Input Image", type='pil', height=500) # Input is an image
outputs=gr.Image(label="Depth Map", type='pil', height=500) # Output is also an image
generate_btn = gr.Button(value="Generate")
generate_btn.click(process_image, inputs=inputs, outputs=outputs, api_name="generate_depth")
if __name__ == '__main__':
API.launch()